| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plydiv.pl |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 2 |  | plydiv.tm |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 3 |  | plydiv.rc |  |-  ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) | 
						
							| 4 |  | plydiv.m1 |  |-  ( ph -> -u 1 e. S ) | 
						
							| 5 |  | plydiv.f |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 6 |  | plydiv.g |  |-  ( ph -> G e. ( Poly ` S ) ) | 
						
							| 7 |  | plydiv.z |  |-  ( ph -> G =/= 0p ) | 
						
							| 8 |  | plydiv.r |  |-  R = ( F oF - ( G oF x. q ) ) | 
						
							| 9 |  | plydiv.d |  |-  ( ph -> D e. NN0 ) | 
						
							| 10 |  | plydiv.e |  |-  ( ph -> ( M - N ) = D ) | 
						
							| 11 |  | plydiv.fz |  |-  ( ph -> F =/= 0p ) | 
						
							| 12 |  | plydiv.u |  |-  U = ( f oF - ( G oF x. p ) ) | 
						
							| 13 |  | plydiv.h |  |-  H = ( z e. CC |-> ( ( ( A ` M ) / ( B ` N ) ) x. ( z ^ D ) ) ) | 
						
							| 14 |  | plydiv.al |  |-  ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - N ) < D ) -> E. p e. ( Poly ` S ) ( U = 0p \/ ( deg ` U ) < N ) ) ) | 
						
							| 15 |  | plydiv.a |  |-  A = ( coeff ` F ) | 
						
							| 16 |  | plydiv.b |  |-  B = ( coeff ` G ) | 
						
							| 17 |  | plydiv.m |  |-  M = ( deg ` F ) | 
						
							| 18 |  | plydiv.n |  |-  N = ( deg ` G ) | 
						
							| 19 |  | plybss |  |-  ( F e. ( Poly ` S ) -> S C_ CC ) | 
						
							| 20 | 5 19 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 21 | 1 2 3 4 | plydivlem1 |  |-  ( ph -> 0 e. S ) | 
						
							| 22 | 15 | coef2 |  |-  ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> A : NN0 --> S ) | 
						
							| 23 | 5 21 22 | syl2anc |  |-  ( ph -> A : NN0 --> S ) | 
						
							| 24 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 25 | 5 24 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 26 | 17 25 | eqeltrid |  |-  ( ph -> M e. NN0 ) | 
						
							| 27 | 23 26 | ffvelcdmd |  |-  ( ph -> ( A ` M ) e. S ) | 
						
							| 28 | 20 27 | sseldd |  |-  ( ph -> ( A ` M ) e. CC ) | 
						
							| 29 | 16 | coef2 |  |-  ( ( G e. ( Poly ` S ) /\ 0 e. S ) -> B : NN0 --> S ) | 
						
							| 30 | 6 21 29 | syl2anc |  |-  ( ph -> B : NN0 --> S ) | 
						
							| 31 |  | dgrcl |  |-  ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) | 
						
							| 32 | 6 31 | syl |  |-  ( ph -> ( deg ` G ) e. NN0 ) | 
						
							| 33 | 18 32 | eqeltrid |  |-  ( ph -> N e. NN0 ) | 
						
							| 34 | 30 33 | ffvelcdmd |  |-  ( ph -> ( B ` N ) e. S ) | 
						
							| 35 | 20 34 | sseldd |  |-  ( ph -> ( B ` N ) e. CC ) | 
						
							| 36 | 18 16 | dgreq0 |  |-  ( G e. ( Poly ` S ) -> ( G = 0p <-> ( B ` N ) = 0 ) ) | 
						
							| 37 | 6 36 | syl |  |-  ( ph -> ( G = 0p <-> ( B ` N ) = 0 ) ) | 
						
							| 38 | 37 | necon3bid |  |-  ( ph -> ( G =/= 0p <-> ( B ` N ) =/= 0 ) ) | 
						
							| 39 | 7 38 | mpbid |  |-  ( ph -> ( B ` N ) =/= 0 ) | 
						
							| 40 | 28 35 39 | divrecd |  |-  ( ph -> ( ( A ` M ) / ( B ` N ) ) = ( ( A ` M ) x. ( 1 / ( B ` N ) ) ) ) | 
						
							| 41 |  | fvex |  |-  ( B ` N ) e. _V | 
						
							| 42 |  | eleq1 |  |-  ( x = ( B ` N ) -> ( x e. S <-> ( B ` N ) e. S ) ) | 
						
							| 43 |  | neeq1 |  |-  ( x = ( B ` N ) -> ( x =/= 0 <-> ( B ` N ) =/= 0 ) ) | 
						
							| 44 | 42 43 | anbi12d |  |-  ( x = ( B ` N ) -> ( ( x e. S /\ x =/= 0 ) <-> ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) ) | 
						
							| 45 | 44 | anbi2d |  |-  ( x = ( B ` N ) -> ( ( ph /\ ( x e. S /\ x =/= 0 ) ) <-> ( ph /\ ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) ) ) | 
						
							| 46 |  | oveq2 |  |-  ( x = ( B ` N ) -> ( 1 / x ) = ( 1 / ( B ` N ) ) ) | 
						
							| 47 | 46 | eleq1d |  |-  ( x = ( B ` N ) -> ( ( 1 / x ) e. S <-> ( 1 / ( B ` N ) ) e. S ) ) | 
						
							| 48 | 45 47 | imbi12d |  |-  ( x = ( B ` N ) -> ( ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) <-> ( ( ph /\ ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) -> ( 1 / ( B ` N ) ) e. S ) ) ) | 
						
							| 49 | 41 48 3 | vtocl |  |-  ( ( ph /\ ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) -> ( 1 / ( B ` N ) ) e. S ) | 
						
							| 50 | 49 | ex |  |-  ( ph -> ( ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) -> ( 1 / ( B ` N ) ) e. S ) ) | 
						
							| 51 | 34 39 50 | mp2and |  |-  ( ph -> ( 1 / ( B ` N ) ) e. S ) | 
						
							| 52 | 2 27 51 | caovcld |  |-  ( ph -> ( ( A ` M ) x. ( 1 / ( B ` N ) ) ) e. S ) | 
						
							| 53 | 40 52 | eqeltrd |  |-  ( ph -> ( ( A ` M ) / ( B ` N ) ) e. S ) | 
						
							| 54 | 13 | ply1term |  |-  ( ( S C_ CC /\ ( ( A ` M ) / ( B ` N ) ) e. S /\ D e. NN0 ) -> H e. ( Poly ` S ) ) | 
						
							| 55 | 20 53 9 54 | syl3anc |  |-  ( ph -> H e. ( Poly ` S ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> H e. ( Poly ` S ) ) | 
						
							| 57 |  | simpr |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> p e. ( Poly ` S ) ) | 
						
							| 58 | 1 | adantlr |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 59 | 56 57 58 | plyadd |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( H oF + p ) e. ( Poly ` S ) ) | 
						
							| 60 |  | cnex |  |-  CC e. _V | 
						
							| 61 | 60 | a1i |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> CC e. _V ) | 
						
							| 62 | 5 | adantr |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> F e. ( Poly ` S ) ) | 
						
							| 63 |  | plyf |  |-  ( F e. ( Poly ` S ) -> F : CC --> CC ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> F : CC --> CC ) | 
						
							| 65 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) | 
						
							| 67 |  | plyf |  |-  ( H e. ( Poly ` S ) -> H : CC --> CC ) | 
						
							| 68 | 56 67 | syl |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> H : CC --> CC ) | 
						
							| 69 | 6 | adantr |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) | 
						
							| 70 |  | plyf |  |-  ( G e. ( Poly ` S ) -> G : CC --> CC ) | 
						
							| 71 | 69 70 | syl |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> G : CC --> CC ) | 
						
							| 72 |  | inidm |  |-  ( CC i^i CC ) = CC | 
						
							| 73 | 66 68 71 61 61 72 | off |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( H oF x. G ) : CC --> CC ) | 
						
							| 74 |  | plyf |  |-  ( p e. ( Poly ` S ) -> p : CC --> CC ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> p : CC --> CC ) | 
						
							| 76 | 66 71 75 61 61 72 | off |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( G oF x. p ) : CC --> CC ) | 
						
							| 77 |  | subsub4 |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x - y ) - z ) = ( x - ( y + z ) ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x - y ) - z ) = ( x - ( y + z ) ) ) | 
						
							| 79 | 61 64 73 76 78 | caofass |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = ( F oF - ( ( H oF x. G ) oF + ( G oF x. p ) ) ) ) | 
						
							| 80 |  | mulcom |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 81 | 80 | adantl |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 82 | 61 68 71 81 | caofcom |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( H oF x. G ) = ( G oF x. H ) ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( H oF x. G ) oF + ( G oF x. p ) ) = ( ( G oF x. H ) oF + ( G oF x. p ) ) ) | 
						
							| 84 |  | adddi |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) | 
						
							| 86 | 61 71 68 75 85 | caofdi |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( G oF x. ( H oF + p ) ) = ( ( G oF x. H ) oF + ( G oF x. p ) ) ) | 
						
							| 87 | 83 86 | eqtr4d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( H oF x. G ) oF + ( G oF x. p ) ) = ( G oF x. ( H oF + p ) ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( F oF - ( ( H oF x. G ) oF + ( G oF x. p ) ) ) = ( F oF - ( G oF x. ( H oF + p ) ) ) ) | 
						
							| 89 | 79 88 | eqtrd |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = ( F oF - ( G oF x. ( H oF + p ) ) ) ) | 
						
							| 90 | 89 | eqeq1d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p <-> ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p ) ) | 
						
							| 91 | 89 | fveq2d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) = ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) ) | 
						
							| 92 | 91 | breq1d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N <-> ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) | 
						
							| 93 | 90 92 | orbi12d |  |-  ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) <-> ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) ) | 
						
							| 94 | 93 | biimpa |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) -> ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) | 
						
							| 95 |  | oveq2 |  |-  ( q = ( H oF + p ) -> ( G oF x. q ) = ( G oF x. ( H oF + p ) ) ) | 
						
							| 96 | 95 | oveq2d |  |-  ( q = ( H oF + p ) -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. ( H oF + p ) ) ) ) | 
						
							| 97 | 8 96 | eqtrid |  |-  ( q = ( H oF + p ) -> R = ( F oF - ( G oF x. ( H oF + p ) ) ) ) | 
						
							| 98 | 97 | eqeq1d |  |-  ( q = ( H oF + p ) -> ( R = 0p <-> ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p ) ) | 
						
							| 99 | 97 | fveq2d |  |-  ( q = ( H oF + p ) -> ( deg ` R ) = ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) ) | 
						
							| 100 | 99 | breq1d |  |-  ( q = ( H oF + p ) -> ( ( deg ` R ) < N <-> ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) | 
						
							| 101 | 98 100 | orbi12d |  |-  ( q = ( H oF + p ) -> ( ( R = 0p \/ ( deg ` R ) < N ) <-> ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) ) | 
						
							| 102 | 101 | rspcev |  |-  ( ( ( H oF + p ) e. ( Poly ` S ) /\ ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < N ) ) | 
						
							| 103 | 59 94 102 | syl2an2r |  |-  ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < N ) ) | 
						
							| 104 | 55 6 1 2 | plymul |  |-  ( ph -> ( H oF x. G ) e. ( Poly ` S ) ) | 
						
							| 105 |  | eqid |  |-  ( deg ` ( H oF x. G ) ) = ( deg ` ( H oF x. G ) ) | 
						
							| 106 | 17 105 | dgrsub |  |-  ( ( F e. ( Poly ` S ) /\ ( H oF x. G ) e. ( Poly ` S ) ) -> ( deg ` ( F oF - ( H oF x. G ) ) ) <_ if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) ) | 
						
							| 107 | 5 104 106 | syl2anc |  |-  ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) <_ if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) ) | 
						
							| 108 | 17 15 | dgreq0 |  |-  ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` M ) = 0 ) ) | 
						
							| 109 | 5 108 | syl |  |-  ( ph -> ( F = 0p <-> ( A ` M ) = 0 ) ) | 
						
							| 110 | 109 | necon3bid |  |-  ( ph -> ( F =/= 0p <-> ( A ` M ) =/= 0 ) ) | 
						
							| 111 | 11 110 | mpbid |  |-  ( ph -> ( A ` M ) =/= 0 ) | 
						
							| 112 | 28 35 111 39 | divne0d |  |-  ( ph -> ( ( A ` M ) / ( B ` N ) ) =/= 0 ) | 
						
							| 113 | 20 53 | sseldd |  |-  ( ph -> ( ( A ` M ) / ( B ` N ) ) e. CC ) | 
						
							| 114 | 13 | coe1term |  |-  ( ( ( ( A ` M ) / ( B ` N ) ) e. CC /\ D e. NN0 /\ D e. NN0 ) -> ( ( coeff ` H ) ` D ) = if ( D = D , ( ( A ` M ) / ( B ` N ) ) , 0 ) ) | 
						
							| 115 | 113 9 9 114 | syl3anc |  |-  ( ph -> ( ( coeff ` H ) ` D ) = if ( D = D , ( ( A ` M ) / ( B ` N ) ) , 0 ) ) | 
						
							| 116 |  | eqid |  |-  D = D | 
						
							| 117 | 116 | iftruei |  |-  if ( D = D , ( ( A ` M ) / ( B ` N ) ) , 0 ) = ( ( A ` M ) / ( B ` N ) ) | 
						
							| 118 | 115 117 | eqtrdi |  |-  ( ph -> ( ( coeff ` H ) ` D ) = ( ( A ` M ) / ( B ` N ) ) ) | 
						
							| 119 |  | c0ex |  |-  0 e. _V | 
						
							| 120 | 119 | fvconst2 |  |-  ( D e. NN0 -> ( ( NN0 X. { 0 } ) ` D ) = 0 ) | 
						
							| 121 | 9 120 | syl |  |-  ( ph -> ( ( NN0 X. { 0 } ) ` D ) = 0 ) | 
						
							| 122 | 112 118 121 | 3netr4d |  |-  ( ph -> ( ( coeff ` H ) ` D ) =/= ( ( NN0 X. { 0 } ) ` D ) ) | 
						
							| 123 |  | fveq2 |  |-  ( H = 0p -> ( coeff ` H ) = ( coeff ` 0p ) ) | 
						
							| 124 |  | coe0 |  |-  ( coeff ` 0p ) = ( NN0 X. { 0 } ) | 
						
							| 125 | 123 124 | eqtrdi |  |-  ( H = 0p -> ( coeff ` H ) = ( NN0 X. { 0 } ) ) | 
						
							| 126 | 125 | fveq1d |  |-  ( H = 0p -> ( ( coeff ` H ) ` D ) = ( ( NN0 X. { 0 } ) ` D ) ) | 
						
							| 127 | 126 | necon3i |  |-  ( ( ( coeff ` H ) ` D ) =/= ( ( NN0 X. { 0 } ) ` D ) -> H =/= 0p ) | 
						
							| 128 | 122 127 | syl |  |-  ( ph -> H =/= 0p ) | 
						
							| 129 |  | eqid |  |-  ( deg ` H ) = ( deg ` H ) | 
						
							| 130 | 129 18 | dgrmul |  |-  ( ( ( H e. ( Poly ` S ) /\ H =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( deg ` ( H oF x. G ) ) = ( ( deg ` H ) + N ) ) | 
						
							| 131 | 55 128 6 7 130 | syl22anc |  |-  ( ph -> ( deg ` ( H oF x. G ) ) = ( ( deg ` H ) + N ) ) | 
						
							| 132 | 13 | dgr1term |  |-  ( ( ( ( A ` M ) / ( B ` N ) ) e. CC /\ ( ( A ` M ) / ( B ` N ) ) =/= 0 /\ D e. NN0 ) -> ( deg ` H ) = D ) | 
						
							| 133 | 113 112 9 132 | syl3anc |  |-  ( ph -> ( deg ` H ) = D ) | 
						
							| 134 | 133 10 | eqtr4d |  |-  ( ph -> ( deg ` H ) = ( M - N ) ) | 
						
							| 135 | 134 | oveq1d |  |-  ( ph -> ( ( deg ` H ) + N ) = ( ( M - N ) + N ) ) | 
						
							| 136 | 26 | nn0cnd |  |-  ( ph -> M e. CC ) | 
						
							| 137 | 33 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 138 | 136 137 | npcand |  |-  ( ph -> ( ( M - N ) + N ) = M ) | 
						
							| 139 | 135 138 | eqtrd |  |-  ( ph -> ( ( deg ` H ) + N ) = M ) | 
						
							| 140 | 131 139 | eqtrd |  |-  ( ph -> ( deg ` ( H oF x. G ) ) = M ) | 
						
							| 141 | 140 | ifeq1d |  |-  ( ph -> if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) = if ( M <_ ( deg ` ( H oF x. G ) ) , M , M ) ) | 
						
							| 142 |  | ifid |  |-  if ( M <_ ( deg ` ( H oF x. G ) ) , M , M ) = M | 
						
							| 143 | 141 142 | eqtrdi |  |-  ( ph -> if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) = M ) | 
						
							| 144 | 107 143 | breqtrd |  |-  ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M ) | 
						
							| 145 |  | eqid |  |-  ( coeff ` ( H oF x. G ) ) = ( coeff ` ( H oF x. G ) ) | 
						
							| 146 | 15 145 | coesub |  |-  ( ( F e. ( Poly ` S ) /\ ( H oF x. G ) e. ( Poly ` S ) ) -> ( coeff ` ( F oF - ( H oF x. G ) ) ) = ( A oF - ( coeff ` ( H oF x. G ) ) ) ) | 
						
							| 147 | 5 104 146 | syl2anc |  |-  ( ph -> ( coeff ` ( F oF - ( H oF x. G ) ) ) = ( A oF - ( coeff ` ( H oF x. G ) ) ) ) | 
						
							| 148 | 147 | fveq1d |  |-  ( ph -> ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = ( ( A oF - ( coeff ` ( H oF x. G ) ) ) ` M ) ) | 
						
							| 149 | 15 | coef3 |  |-  ( F e. ( Poly ` S ) -> A : NN0 --> CC ) | 
						
							| 150 |  | ffn |  |-  ( A : NN0 --> CC -> A Fn NN0 ) | 
						
							| 151 | 5 149 150 | 3syl |  |-  ( ph -> A Fn NN0 ) | 
						
							| 152 | 145 | coef3 |  |-  ( ( H oF x. G ) e. ( Poly ` S ) -> ( coeff ` ( H oF x. G ) ) : NN0 --> CC ) | 
						
							| 153 |  | ffn |  |-  ( ( coeff ` ( H oF x. G ) ) : NN0 --> CC -> ( coeff ` ( H oF x. G ) ) Fn NN0 ) | 
						
							| 154 | 104 152 153 | 3syl |  |-  ( ph -> ( coeff ` ( H oF x. G ) ) Fn NN0 ) | 
						
							| 155 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 156 | 155 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 157 |  | inidm |  |-  ( NN0 i^i NN0 ) = NN0 | 
						
							| 158 |  | eqidd |  |-  ( ( ph /\ M e. NN0 ) -> ( A ` M ) = ( A ` M ) ) | 
						
							| 159 |  | eqid |  |-  ( coeff ` H ) = ( coeff ` H ) | 
						
							| 160 | 159 16 129 18 | coemulhi |  |-  ( ( H e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( H oF x. G ) ) ` ( ( deg ` H ) + N ) ) = ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) ) | 
						
							| 161 | 55 6 160 | syl2anc |  |-  ( ph -> ( ( coeff ` ( H oF x. G ) ) ` ( ( deg ` H ) + N ) ) = ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) ) | 
						
							| 162 | 139 | fveq2d |  |-  ( ph -> ( ( coeff ` ( H oF x. G ) ) ` ( ( deg ` H ) + N ) ) = ( ( coeff ` ( H oF x. G ) ) ` M ) ) | 
						
							| 163 | 133 | fveq2d |  |-  ( ph -> ( ( coeff ` H ) ` ( deg ` H ) ) = ( ( coeff ` H ) ` D ) ) | 
						
							| 164 | 163 118 | eqtrd |  |-  ( ph -> ( ( coeff ` H ) ` ( deg ` H ) ) = ( ( A ` M ) / ( B ` N ) ) ) | 
						
							| 165 | 164 | oveq1d |  |-  ( ph -> ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) = ( ( ( A ` M ) / ( B ` N ) ) x. ( B ` N ) ) ) | 
						
							| 166 | 28 35 39 | divcan1d |  |-  ( ph -> ( ( ( A ` M ) / ( B ` N ) ) x. ( B ` N ) ) = ( A ` M ) ) | 
						
							| 167 | 165 166 | eqtrd |  |-  ( ph -> ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) = ( A ` M ) ) | 
						
							| 168 | 161 162 167 | 3eqtr3d |  |-  ( ph -> ( ( coeff ` ( H oF x. G ) ) ` M ) = ( A ` M ) ) | 
						
							| 169 | 168 | adantr |  |-  ( ( ph /\ M e. NN0 ) -> ( ( coeff ` ( H oF x. G ) ) ` M ) = ( A ` M ) ) | 
						
							| 170 | 151 154 156 156 157 158 169 | ofval |  |-  ( ( ph /\ M e. NN0 ) -> ( ( A oF - ( coeff ` ( H oF x. G ) ) ) ` M ) = ( ( A ` M ) - ( A ` M ) ) ) | 
						
							| 171 | 26 170 | mpdan |  |-  ( ph -> ( ( A oF - ( coeff ` ( H oF x. G ) ) ) ` M ) = ( ( A ` M ) - ( A ` M ) ) ) | 
						
							| 172 | 28 | subidd |  |-  ( ph -> ( ( A ` M ) - ( A ` M ) ) = 0 ) | 
						
							| 173 | 148 171 172 | 3eqtrd |  |-  ( ph -> ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) | 
						
							| 174 | 5 104 1 2 4 | plysub |  |-  ( ph -> ( F oF - ( H oF x. G ) ) e. ( Poly ` S ) ) | 
						
							| 175 |  | dgrcl |  |-  ( ( F oF - ( H oF x. G ) ) e. ( Poly ` S ) -> ( deg ` ( F oF - ( H oF x. G ) ) ) e. NN0 ) | 
						
							| 176 | 174 175 | syl |  |-  ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) e. NN0 ) | 
						
							| 177 | 176 | nn0red |  |-  ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) e. RR ) | 
						
							| 178 | 26 | nn0red |  |-  ( ph -> M e. RR ) | 
						
							| 179 | 33 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 180 | 177 178 179 | ltsub1d |  |-  ( ph -> ( ( deg ` ( F oF - ( H oF x. G ) ) ) < M <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < ( M - N ) ) ) | 
						
							| 181 | 10 | breq2d |  |-  ( ph -> ( ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < ( M - N ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) | 
						
							| 182 | 180 181 | bitrd |  |-  ( ph -> ( ( deg ` ( F oF - ( H oF x. G ) ) ) < M <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) | 
						
							| 183 | 182 | orbi2d |  |-  ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( deg ` ( F oF - ( H oF x. G ) ) ) < M ) <-> ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) ) | 
						
							| 184 |  | eqid |  |-  ( deg ` ( F oF - ( H oF x. G ) ) ) = ( deg ` ( F oF - ( H oF x. G ) ) ) | 
						
							| 185 |  | eqid |  |-  ( coeff ` ( F oF - ( H oF x. G ) ) ) = ( coeff ` ( F oF - ( H oF x. G ) ) ) | 
						
							| 186 | 184 185 | dgrlt |  |-  ( ( ( F oF - ( H oF x. G ) ) e. ( Poly ` S ) /\ M e. NN0 ) -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( deg ` ( F oF - ( H oF x. G ) ) ) < M ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M /\ ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) ) ) | 
						
							| 187 | 174 26 186 | syl2anc |  |-  ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( deg ` ( F oF - ( H oF x. G ) ) ) < M ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M /\ ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) ) ) | 
						
							| 188 | 183 187 | bitr3d |  |-  ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M /\ ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) ) ) | 
						
							| 189 | 144 173 188 | mpbir2and |  |-  ( ph -> ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) | 
						
							| 190 |  | eqeq1 |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( f = 0p <-> ( F oF - ( H oF x. G ) ) = 0p ) ) | 
						
							| 191 |  | fveq2 |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( deg ` f ) = ( deg ` ( F oF - ( H oF x. G ) ) ) ) | 
						
							| 192 | 191 | oveq1d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( ( deg ` f ) - N ) = ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) ) | 
						
							| 193 | 192 | breq1d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( ( ( deg ` f ) - N ) < D <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) | 
						
							| 194 | 190 193 | orbi12d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - N ) < D ) <-> ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) ) | 
						
							| 195 |  | oveq1 |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( f oF - ( G oF x. p ) ) = ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) | 
						
							| 196 | 12 195 | eqtrid |  |-  ( f = ( F oF - ( H oF x. G ) ) -> U = ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) | 
						
							| 197 | 196 | eqeq1d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( U = 0p <-> ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p ) ) | 
						
							| 198 | 196 | fveq2d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( deg ` U ) = ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) ) | 
						
							| 199 | 198 | breq1d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( ( deg ` U ) < N <-> ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) | 
						
							| 200 | 197 199 | orbi12d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( ( U = 0p \/ ( deg ` U ) < N ) <-> ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) | 
						
							| 201 | 200 | rexbidv |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( E. p e. ( Poly ` S ) ( U = 0p \/ ( deg ` U ) < N ) <-> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) | 
						
							| 202 | 194 201 | imbi12d |  |-  ( f = ( F oF - ( H oF x. G ) ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - N ) < D ) -> E. p e. ( Poly ` S ) ( U = 0p \/ ( deg ` U ) < N ) ) <-> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) -> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) ) | 
						
							| 203 | 202 14 174 | rspcdva |  |-  ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) -> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) | 
						
							| 204 | 189 203 | mpd |  |-  ( ph -> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) | 
						
							| 205 | 103 204 | r19.29a |  |-  ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < N ) ) |