Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
9 |
|
plydiv.d |
|- ( ph -> D e. NN0 ) |
10 |
|
plydiv.e |
|- ( ph -> ( M - N ) = D ) |
11 |
|
plydiv.fz |
|- ( ph -> F =/= 0p ) |
12 |
|
plydiv.u |
|- U = ( f oF - ( G oF x. p ) ) |
13 |
|
plydiv.h |
|- H = ( z e. CC |-> ( ( ( A ` M ) / ( B ` N ) ) x. ( z ^ D ) ) ) |
14 |
|
plydiv.al |
|- ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - N ) < D ) -> E. p e. ( Poly ` S ) ( U = 0p \/ ( deg ` U ) < N ) ) ) |
15 |
|
plydiv.a |
|- A = ( coeff ` F ) |
16 |
|
plydiv.b |
|- B = ( coeff ` G ) |
17 |
|
plydiv.m |
|- M = ( deg ` F ) |
18 |
|
plydiv.n |
|- N = ( deg ` G ) |
19 |
|
plybss |
|- ( F e. ( Poly ` S ) -> S C_ CC ) |
20 |
5 19
|
syl |
|- ( ph -> S C_ CC ) |
21 |
1 2 3 4
|
plydivlem1 |
|- ( ph -> 0 e. S ) |
22 |
15
|
coef2 |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> A : NN0 --> S ) |
23 |
5 21 22
|
syl2anc |
|- ( ph -> A : NN0 --> S ) |
24 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
25 |
5 24
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
26 |
17 25
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
27 |
23 26
|
ffvelrnd |
|- ( ph -> ( A ` M ) e. S ) |
28 |
20 27
|
sseldd |
|- ( ph -> ( A ` M ) e. CC ) |
29 |
16
|
coef2 |
|- ( ( G e. ( Poly ` S ) /\ 0 e. S ) -> B : NN0 --> S ) |
30 |
6 21 29
|
syl2anc |
|- ( ph -> B : NN0 --> S ) |
31 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
32 |
6 31
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
33 |
18 32
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
34 |
30 33
|
ffvelrnd |
|- ( ph -> ( B ` N ) e. S ) |
35 |
20 34
|
sseldd |
|- ( ph -> ( B ` N ) e. CC ) |
36 |
18 16
|
dgreq0 |
|- ( G e. ( Poly ` S ) -> ( G = 0p <-> ( B ` N ) = 0 ) ) |
37 |
6 36
|
syl |
|- ( ph -> ( G = 0p <-> ( B ` N ) = 0 ) ) |
38 |
37
|
necon3bid |
|- ( ph -> ( G =/= 0p <-> ( B ` N ) =/= 0 ) ) |
39 |
7 38
|
mpbid |
|- ( ph -> ( B ` N ) =/= 0 ) |
40 |
28 35 39
|
divrecd |
|- ( ph -> ( ( A ` M ) / ( B ` N ) ) = ( ( A ` M ) x. ( 1 / ( B ` N ) ) ) ) |
41 |
|
fvex |
|- ( B ` N ) e. _V |
42 |
|
eleq1 |
|- ( x = ( B ` N ) -> ( x e. S <-> ( B ` N ) e. S ) ) |
43 |
|
neeq1 |
|- ( x = ( B ` N ) -> ( x =/= 0 <-> ( B ` N ) =/= 0 ) ) |
44 |
42 43
|
anbi12d |
|- ( x = ( B ` N ) -> ( ( x e. S /\ x =/= 0 ) <-> ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) ) |
45 |
44
|
anbi2d |
|- ( x = ( B ` N ) -> ( ( ph /\ ( x e. S /\ x =/= 0 ) ) <-> ( ph /\ ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) ) ) |
46 |
|
oveq2 |
|- ( x = ( B ` N ) -> ( 1 / x ) = ( 1 / ( B ` N ) ) ) |
47 |
46
|
eleq1d |
|- ( x = ( B ` N ) -> ( ( 1 / x ) e. S <-> ( 1 / ( B ` N ) ) e. S ) ) |
48 |
45 47
|
imbi12d |
|- ( x = ( B ` N ) -> ( ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) <-> ( ( ph /\ ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) -> ( 1 / ( B ` N ) ) e. S ) ) ) |
49 |
41 48 3
|
vtocl |
|- ( ( ph /\ ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) ) -> ( 1 / ( B ` N ) ) e. S ) |
50 |
49
|
ex |
|- ( ph -> ( ( ( B ` N ) e. S /\ ( B ` N ) =/= 0 ) -> ( 1 / ( B ` N ) ) e. S ) ) |
51 |
34 39 50
|
mp2and |
|- ( ph -> ( 1 / ( B ` N ) ) e. S ) |
52 |
2 27 51
|
caovcld |
|- ( ph -> ( ( A ` M ) x. ( 1 / ( B ` N ) ) ) e. S ) |
53 |
40 52
|
eqeltrd |
|- ( ph -> ( ( A ` M ) / ( B ` N ) ) e. S ) |
54 |
13
|
ply1term |
|- ( ( S C_ CC /\ ( ( A ` M ) / ( B ` N ) ) e. S /\ D e. NN0 ) -> H e. ( Poly ` S ) ) |
55 |
20 53 9 54
|
syl3anc |
|- ( ph -> H e. ( Poly ` S ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> H e. ( Poly ` S ) ) |
57 |
|
simpr |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> p e. ( Poly ` S ) ) |
58 |
1
|
adantlr |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
59 |
56 57 58
|
plyadd |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( H oF + p ) e. ( Poly ` S ) ) |
60 |
|
cnex |
|- CC e. _V |
61 |
60
|
a1i |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> CC e. _V ) |
62 |
5
|
adantr |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> F e. ( Poly ` S ) ) |
63 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
64 |
62 63
|
syl |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> F : CC --> CC ) |
65 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
66 |
65
|
adantl |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
67 |
|
plyf |
|- ( H e. ( Poly ` S ) -> H : CC --> CC ) |
68 |
56 67
|
syl |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> H : CC --> CC ) |
69 |
6
|
adantr |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) |
70 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
71 |
69 70
|
syl |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> G : CC --> CC ) |
72 |
|
inidm |
|- ( CC i^i CC ) = CC |
73 |
66 68 71 61 61 72
|
off |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( H oF x. G ) : CC --> CC ) |
74 |
|
plyf |
|- ( p e. ( Poly ` S ) -> p : CC --> CC ) |
75 |
74
|
adantl |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> p : CC --> CC ) |
76 |
66 71 75 61 61 72
|
off |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( G oF x. p ) : CC --> CC ) |
77 |
|
subsub4 |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x - y ) - z ) = ( x - ( y + z ) ) ) |
78 |
77
|
adantl |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x - y ) - z ) = ( x - ( y + z ) ) ) |
79 |
61 64 73 76 78
|
caofass |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = ( F oF - ( ( H oF x. G ) oF + ( G oF x. p ) ) ) ) |
80 |
|
mulcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
81 |
80
|
adantl |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) |
82 |
61 68 71 81
|
caofcom |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( H oF x. G ) = ( G oF x. H ) ) |
83 |
82
|
oveq1d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( H oF x. G ) oF + ( G oF x. p ) ) = ( ( G oF x. H ) oF + ( G oF x. p ) ) ) |
84 |
|
adddi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
85 |
84
|
adantl |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
86 |
61 71 68 75 85
|
caofdi |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( G oF x. ( H oF + p ) ) = ( ( G oF x. H ) oF + ( G oF x. p ) ) ) |
87 |
83 86
|
eqtr4d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( H oF x. G ) oF + ( G oF x. p ) ) = ( G oF x. ( H oF + p ) ) ) |
88 |
87
|
oveq2d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( F oF - ( ( H oF x. G ) oF + ( G oF x. p ) ) ) = ( F oF - ( G oF x. ( H oF + p ) ) ) ) |
89 |
79 88
|
eqtrd |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = ( F oF - ( G oF x. ( H oF + p ) ) ) ) |
90 |
89
|
eqeq1d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p <-> ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p ) ) |
91 |
89
|
fveq2d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) = ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) ) |
92 |
91
|
breq1d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N <-> ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) |
93 |
90 92
|
orbi12d |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> ( ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) <-> ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) ) |
94 |
93
|
biimpa |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) -> ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) |
95 |
|
oveq2 |
|- ( q = ( H oF + p ) -> ( G oF x. q ) = ( G oF x. ( H oF + p ) ) ) |
96 |
95
|
oveq2d |
|- ( q = ( H oF + p ) -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. ( H oF + p ) ) ) ) |
97 |
8 96
|
eqtrid |
|- ( q = ( H oF + p ) -> R = ( F oF - ( G oF x. ( H oF + p ) ) ) ) |
98 |
97
|
eqeq1d |
|- ( q = ( H oF + p ) -> ( R = 0p <-> ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p ) ) |
99 |
97
|
fveq2d |
|- ( q = ( H oF + p ) -> ( deg ` R ) = ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) ) |
100 |
99
|
breq1d |
|- ( q = ( H oF + p ) -> ( ( deg ` R ) < N <-> ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) |
101 |
98 100
|
orbi12d |
|- ( q = ( H oF + p ) -> ( ( R = 0p \/ ( deg ` R ) < N ) <-> ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) ) |
102 |
101
|
rspcev |
|- ( ( ( H oF + p ) e. ( Poly ` S ) /\ ( ( F oF - ( G oF x. ( H oF + p ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( H oF + p ) ) ) ) < N ) ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < N ) ) |
103 |
59 94 102
|
syl2an2r |
|- ( ( ( ph /\ p e. ( Poly ` S ) ) /\ ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < N ) ) |
104 |
55 6 1 2
|
plymul |
|- ( ph -> ( H oF x. G ) e. ( Poly ` S ) ) |
105 |
|
eqid |
|- ( deg ` ( H oF x. G ) ) = ( deg ` ( H oF x. G ) ) |
106 |
17 105
|
dgrsub |
|- ( ( F e. ( Poly ` S ) /\ ( H oF x. G ) e. ( Poly ` S ) ) -> ( deg ` ( F oF - ( H oF x. G ) ) ) <_ if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) ) |
107 |
5 104 106
|
syl2anc |
|- ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) <_ if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) ) |
108 |
17 15
|
dgreq0 |
|- ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` M ) = 0 ) ) |
109 |
5 108
|
syl |
|- ( ph -> ( F = 0p <-> ( A ` M ) = 0 ) ) |
110 |
109
|
necon3bid |
|- ( ph -> ( F =/= 0p <-> ( A ` M ) =/= 0 ) ) |
111 |
11 110
|
mpbid |
|- ( ph -> ( A ` M ) =/= 0 ) |
112 |
28 35 111 39
|
divne0d |
|- ( ph -> ( ( A ` M ) / ( B ` N ) ) =/= 0 ) |
113 |
20 53
|
sseldd |
|- ( ph -> ( ( A ` M ) / ( B ` N ) ) e. CC ) |
114 |
13
|
coe1term |
|- ( ( ( ( A ` M ) / ( B ` N ) ) e. CC /\ D e. NN0 /\ D e. NN0 ) -> ( ( coeff ` H ) ` D ) = if ( D = D , ( ( A ` M ) / ( B ` N ) ) , 0 ) ) |
115 |
113 9 9 114
|
syl3anc |
|- ( ph -> ( ( coeff ` H ) ` D ) = if ( D = D , ( ( A ` M ) / ( B ` N ) ) , 0 ) ) |
116 |
|
eqid |
|- D = D |
117 |
116
|
iftruei |
|- if ( D = D , ( ( A ` M ) / ( B ` N ) ) , 0 ) = ( ( A ` M ) / ( B ` N ) ) |
118 |
115 117
|
eqtrdi |
|- ( ph -> ( ( coeff ` H ) ` D ) = ( ( A ` M ) / ( B ` N ) ) ) |
119 |
|
c0ex |
|- 0 e. _V |
120 |
119
|
fvconst2 |
|- ( D e. NN0 -> ( ( NN0 X. { 0 } ) ` D ) = 0 ) |
121 |
9 120
|
syl |
|- ( ph -> ( ( NN0 X. { 0 } ) ` D ) = 0 ) |
122 |
112 118 121
|
3netr4d |
|- ( ph -> ( ( coeff ` H ) ` D ) =/= ( ( NN0 X. { 0 } ) ` D ) ) |
123 |
|
fveq2 |
|- ( H = 0p -> ( coeff ` H ) = ( coeff ` 0p ) ) |
124 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
125 |
123 124
|
eqtrdi |
|- ( H = 0p -> ( coeff ` H ) = ( NN0 X. { 0 } ) ) |
126 |
125
|
fveq1d |
|- ( H = 0p -> ( ( coeff ` H ) ` D ) = ( ( NN0 X. { 0 } ) ` D ) ) |
127 |
126
|
necon3i |
|- ( ( ( coeff ` H ) ` D ) =/= ( ( NN0 X. { 0 } ) ` D ) -> H =/= 0p ) |
128 |
122 127
|
syl |
|- ( ph -> H =/= 0p ) |
129 |
|
eqid |
|- ( deg ` H ) = ( deg ` H ) |
130 |
129 18
|
dgrmul |
|- ( ( ( H e. ( Poly ` S ) /\ H =/= 0p ) /\ ( G e. ( Poly ` S ) /\ G =/= 0p ) ) -> ( deg ` ( H oF x. G ) ) = ( ( deg ` H ) + N ) ) |
131 |
55 128 6 7 130
|
syl22anc |
|- ( ph -> ( deg ` ( H oF x. G ) ) = ( ( deg ` H ) + N ) ) |
132 |
13
|
dgr1term |
|- ( ( ( ( A ` M ) / ( B ` N ) ) e. CC /\ ( ( A ` M ) / ( B ` N ) ) =/= 0 /\ D e. NN0 ) -> ( deg ` H ) = D ) |
133 |
113 112 9 132
|
syl3anc |
|- ( ph -> ( deg ` H ) = D ) |
134 |
133 10
|
eqtr4d |
|- ( ph -> ( deg ` H ) = ( M - N ) ) |
135 |
134
|
oveq1d |
|- ( ph -> ( ( deg ` H ) + N ) = ( ( M - N ) + N ) ) |
136 |
26
|
nn0cnd |
|- ( ph -> M e. CC ) |
137 |
33
|
nn0cnd |
|- ( ph -> N e. CC ) |
138 |
136 137
|
npcand |
|- ( ph -> ( ( M - N ) + N ) = M ) |
139 |
135 138
|
eqtrd |
|- ( ph -> ( ( deg ` H ) + N ) = M ) |
140 |
131 139
|
eqtrd |
|- ( ph -> ( deg ` ( H oF x. G ) ) = M ) |
141 |
140
|
ifeq1d |
|- ( ph -> if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) = if ( M <_ ( deg ` ( H oF x. G ) ) , M , M ) ) |
142 |
|
ifid |
|- if ( M <_ ( deg ` ( H oF x. G ) ) , M , M ) = M |
143 |
141 142
|
eqtrdi |
|- ( ph -> if ( M <_ ( deg ` ( H oF x. G ) ) , ( deg ` ( H oF x. G ) ) , M ) = M ) |
144 |
107 143
|
breqtrd |
|- ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M ) |
145 |
|
eqid |
|- ( coeff ` ( H oF x. G ) ) = ( coeff ` ( H oF x. G ) ) |
146 |
15 145
|
coesub |
|- ( ( F e. ( Poly ` S ) /\ ( H oF x. G ) e. ( Poly ` S ) ) -> ( coeff ` ( F oF - ( H oF x. G ) ) ) = ( A oF - ( coeff ` ( H oF x. G ) ) ) ) |
147 |
5 104 146
|
syl2anc |
|- ( ph -> ( coeff ` ( F oF - ( H oF x. G ) ) ) = ( A oF - ( coeff ` ( H oF x. G ) ) ) ) |
148 |
147
|
fveq1d |
|- ( ph -> ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = ( ( A oF - ( coeff ` ( H oF x. G ) ) ) ` M ) ) |
149 |
15
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
150 |
|
ffn |
|- ( A : NN0 --> CC -> A Fn NN0 ) |
151 |
5 149 150
|
3syl |
|- ( ph -> A Fn NN0 ) |
152 |
145
|
coef3 |
|- ( ( H oF x. G ) e. ( Poly ` S ) -> ( coeff ` ( H oF x. G ) ) : NN0 --> CC ) |
153 |
|
ffn |
|- ( ( coeff ` ( H oF x. G ) ) : NN0 --> CC -> ( coeff ` ( H oF x. G ) ) Fn NN0 ) |
154 |
104 152 153
|
3syl |
|- ( ph -> ( coeff ` ( H oF x. G ) ) Fn NN0 ) |
155 |
|
nn0ex |
|- NN0 e. _V |
156 |
155
|
a1i |
|- ( ph -> NN0 e. _V ) |
157 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
158 |
|
eqidd |
|- ( ( ph /\ M e. NN0 ) -> ( A ` M ) = ( A ` M ) ) |
159 |
|
eqid |
|- ( coeff ` H ) = ( coeff ` H ) |
160 |
159 16 129 18
|
coemulhi |
|- ( ( H e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( coeff ` ( H oF x. G ) ) ` ( ( deg ` H ) + N ) ) = ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) ) |
161 |
55 6 160
|
syl2anc |
|- ( ph -> ( ( coeff ` ( H oF x. G ) ) ` ( ( deg ` H ) + N ) ) = ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) ) |
162 |
139
|
fveq2d |
|- ( ph -> ( ( coeff ` ( H oF x. G ) ) ` ( ( deg ` H ) + N ) ) = ( ( coeff ` ( H oF x. G ) ) ` M ) ) |
163 |
133
|
fveq2d |
|- ( ph -> ( ( coeff ` H ) ` ( deg ` H ) ) = ( ( coeff ` H ) ` D ) ) |
164 |
163 118
|
eqtrd |
|- ( ph -> ( ( coeff ` H ) ` ( deg ` H ) ) = ( ( A ` M ) / ( B ` N ) ) ) |
165 |
164
|
oveq1d |
|- ( ph -> ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) = ( ( ( A ` M ) / ( B ` N ) ) x. ( B ` N ) ) ) |
166 |
28 35 39
|
divcan1d |
|- ( ph -> ( ( ( A ` M ) / ( B ` N ) ) x. ( B ` N ) ) = ( A ` M ) ) |
167 |
165 166
|
eqtrd |
|- ( ph -> ( ( ( coeff ` H ) ` ( deg ` H ) ) x. ( B ` N ) ) = ( A ` M ) ) |
168 |
161 162 167
|
3eqtr3d |
|- ( ph -> ( ( coeff ` ( H oF x. G ) ) ` M ) = ( A ` M ) ) |
169 |
168
|
adantr |
|- ( ( ph /\ M e. NN0 ) -> ( ( coeff ` ( H oF x. G ) ) ` M ) = ( A ` M ) ) |
170 |
151 154 156 156 157 158 169
|
ofval |
|- ( ( ph /\ M e. NN0 ) -> ( ( A oF - ( coeff ` ( H oF x. G ) ) ) ` M ) = ( ( A ` M ) - ( A ` M ) ) ) |
171 |
26 170
|
mpdan |
|- ( ph -> ( ( A oF - ( coeff ` ( H oF x. G ) ) ) ` M ) = ( ( A ` M ) - ( A ` M ) ) ) |
172 |
28
|
subidd |
|- ( ph -> ( ( A ` M ) - ( A ` M ) ) = 0 ) |
173 |
148 171 172
|
3eqtrd |
|- ( ph -> ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) |
174 |
5 104 1 2 4
|
plysub |
|- ( ph -> ( F oF - ( H oF x. G ) ) e. ( Poly ` S ) ) |
175 |
|
dgrcl |
|- ( ( F oF - ( H oF x. G ) ) e. ( Poly ` S ) -> ( deg ` ( F oF - ( H oF x. G ) ) ) e. NN0 ) |
176 |
174 175
|
syl |
|- ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) e. NN0 ) |
177 |
176
|
nn0red |
|- ( ph -> ( deg ` ( F oF - ( H oF x. G ) ) ) e. RR ) |
178 |
26
|
nn0red |
|- ( ph -> M e. RR ) |
179 |
33
|
nn0red |
|- ( ph -> N e. RR ) |
180 |
177 178 179
|
ltsub1d |
|- ( ph -> ( ( deg ` ( F oF - ( H oF x. G ) ) ) < M <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < ( M - N ) ) ) |
181 |
10
|
breq2d |
|- ( ph -> ( ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < ( M - N ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) |
182 |
180 181
|
bitrd |
|- ( ph -> ( ( deg ` ( F oF - ( H oF x. G ) ) ) < M <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) |
183 |
182
|
orbi2d |
|- ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( deg ` ( F oF - ( H oF x. G ) ) ) < M ) <-> ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) ) |
184 |
|
eqid |
|- ( deg ` ( F oF - ( H oF x. G ) ) ) = ( deg ` ( F oF - ( H oF x. G ) ) ) |
185 |
|
eqid |
|- ( coeff ` ( F oF - ( H oF x. G ) ) ) = ( coeff ` ( F oF - ( H oF x. G ) ) ) |
186 |
184 185
|
dgrlt |
|- ( ( ( F oF - ( H oF x. G ) ) e. ( Poly ` S ) /\ M e. NN0 ) -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( deg ` ( F oF - ( H oF x. G ) ) ) < M ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M /\ ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) ) ) |
187 |
174 26 186
|
syl2anc |
|- ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( deg ` ( F oF - ( H oF x. G ) ) ) < M ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M /\ ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) ) ) |
188 |
183 187
|
bitr3d |
|- ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) <_ M /\ ( ( coeff ` ( F oF - ( H oF x. G ) ) ) ` M ) = 0 ) ) ) |
189 |
144 173 188
|
mpbir2and |
|- ( ph -> ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) |
190 |
|
eqeq1 |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( f = 0p <-> ( F oF - ( H oF x. G ) ) = 0p ) ) |
191 |
|
fveq2 |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( deg ` f ) = ( deg ` ( F oF - ( H oF x. G ) ) ) ) |
192 |
191
|
oveq1d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( ( deg ` f ) - N ) = ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) ) |
193 |
192
|
breq1d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( ( ( deg ` f ) - N ) < D <-> ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) |
194 |
190 193
|
orbi12d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - N ) < D ) <-> ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) ) ) |
195 |
|
oveq1 |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( f oF - ( G oF x. p ) ) = ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) |
196 |
12 195
|
eqtrid |
|- ( f = ( F oF - ( H oF x. G ) ) -> U = ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) |
197 |
196
|
eqeq1d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( U = 0p <-> ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p ) ) |
198 |
196
|
fveq2d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( deg ` U ) = ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) ) |
199 |
198
|
breq1d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( ( deg ` U ) < N <-> ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) |
200 |
197 199
|
orbi12d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( ( U = 0p \/ ( deg ` U ) < N ) <-> ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) |
201 |
200
|
rexbidv |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( E. p e. ( Poly ` S ) ( U = 0p \/ ( deg ` U ) < N ) <-> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) |
202 |
194 201
|
imbi12d |
|- ( f = ( F oF - ( H oF x. G ) ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - N ) < D ) -> E. p e. ( Poly ` S ) ( U = 0p \/ ( deg ` U ) < N ) ) <-> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) -> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) ) |
203 |
202 14 174
|
rspcdva |
|- ( ph -> ( ( ( F oF - ( H oF x. G ) ) = 0p \/ ( ( deg ` ( F oF - ( H oF x. G ) ) ) - N ) < D ) -> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) ) |
204 |
189 203
|
mpd |
|- ( ph -> E. p e. ( Poly ` S ) ( ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( ( F oF - ( H oF x. G ) ) oF - ( G oF x. p ) ) ) < N ) ) |
205 |
103 204
|
r19.29a |
|- ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < N ) ) |