Step |
Hyp |
Ref |
Expression |
1 |
|
plyeq0.1 |
|- ( ph -> S C_ CC ) |
2 |
|
plyeq0.2 |
|- ( ph -> N e. NN0 ) |
3 |
|
plyeq0.3 |
|- ( ph -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) |
4 |
|
plyeq0.4 |
|- ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
5 |
|
plyeq0.5 |
|- ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
6 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
7 |
6
|
snssd |
|- ( ph -> { 0 } C_ CC ) |
8 |
1 7
|
unssd |
|- ( ph -> ( S u. { 0 } ) C_ CC ) |
9 |
|
cnex |
|- CC e. _V |
10 |
|
ssexg |
|- ( ( ( S u. { 0 } ) C_ CC /\ CC e. _V ) -> ( S u. { 0 } ) e. _V ) |
11 |
8 9 10
|
sylancl |
|- ( ph -> ( S u. { 0 } ) e. _V ) |
12 |
|
nn0ex |
|- NN0 e. _V |
13 |
|
elmapg |
|- ( ( ( S u. { 0 } ) e. _V /\ NN0 e. _V ) -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) |
14 |
11 12 13
|
sylancl |
|- ( ph -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) |
15 |
3 14
|
mpbid |
|- ( ph -> A : NN0 --> ( S u. { 0 } ) ) |
16 |
15
|
ffnd |
|- ( ph -> A Fn NN0 ) |
17 |
|
imadmrn |
|- ( A " dom A ) = ran A |
18 |
|
fdm |
|- ( A : NN0 --> ( S u. { 0 } ) -> dom A = NN0 ) |
19 |
|
fimacnv |
|- ( A : NN0 --> ( S u. { 0 } ) -> ( `' A " ( S u. { 0 } ) ) = NN0 ) |
20 |
18 19
|
eqtr4d |
|- ( A : NN0 --> ( S u. { 0 } ) -> dom A = ( `' A " ( S u. { 0 } ) ) ) |
21 |
15 20
|
syl |
|- ( ph -> dom A = ( `' A " ( S u. { 0 } ) ) ) |
22 |
|
simpr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) = (/) ) -> ( `' A " ( S \ { 0 } ) ) = (/) ) |
23 |
1
|
adantr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> S C_ CC ) |
24 |
2
|
adantr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> N e. NN0 ) |
25 |
3
|
adantr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) |
26 |
4
|
adantr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
27 |
5
|
adantr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
28 |
|
eqid |
|- sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) = sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) |
29 |
|
simpr |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) |
30 |
23 24 25 26 27 28 29
|
plyeq0lem |
|- -. ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) |
31 |
30
|
pm2.21i |
|- ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> ( `' A " ( S \ { 0 } ) ) = (/) ) |
32 |
22 31
|
pm2.61dane |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) = (/) ) |
33 |
32
|
uneq1d |
|- ( ph -> ( ( `' A " ( S \ { 0 } ) ) u. ( `' A " { 0 } ) ) = ( (/) u. ( `' A " { 0 } ) ) ) |
34 |
|
undif1 |
|- ( ( S \ { 0 } ) u. { 0 } ) = ( S u. { 0 } ) |
35 |
34
|
imaeq2i |
|- ( `' A " ( ( S \ { 0 } ) u. { 0 } ) ) = ( `' A " ( S u. { 0 } ) ) |
36 |
|
imaundi |
|- ( `' A " ( ( S \ { 0 } ) u. { 0 } ) ) = ( ( `' A " ( S \ { 0 } ) ) u. ( `' A " { 0 } ) ) |
37 |
35 36
|
eqtr3i |
|- ( `' A " ( S u. { 0 } ) ) = ( ( `' A " ( S \ { 0 } ) ) u. ( `' A " { 0 } ) ) |
38 |
|
un0 |
|- ( ( `' A " { 0 } ) u. (/) ) = ( `' A " { 0 } ) |
39 |
|
uncom |
|- ( ( `' A " { 0 } ) u. (/) ) = ( (/) u. ( `' A " { 0 } ) ) |
40 |
38 39
|
eqtr3i |
|- ( `' A " { 0 } ) = ( (/) u. ( `' A " { 0 } ) ) |
41 |
33 37 40
|
3eqtr4g |
|- ( ph -> ( `' A " ( S u. { 0 } ) ) = ( `' A " { 0 } ) ) |
42 |
21 41
|
eqtrd |
|- ( ph -> dom A = ( `' A " { 0 } ) ) |
43 |
|
eqimss |
|- ( dom A = ( `' A " { 0 } ) -> dom A C_ ( `' A " { 0 } ) ) |
44 |
42 43
|
syl |
|- ( ph -> dom A C_ ( `' A " { 0 } ) ) |
45 |
15
|
ffund |
|- ( ph -> Fun A ) |
46 |
|
ssid |
|- dom A C_ dom A |
47 |
|
funimass3 |
|- ( ( Fun A /\ dom A C_ dom A ) -> ( ( A " dom A ) C_ { 0 } <-> dom A C_ ( `' A " { 0 } ) ) ) |
48 |
45 46 47
|
sylancl |
|- ( ph -> ( ( A " dom A ) C_ { 0 } <-> dom A C_ ( `' A " { 0 } ) ) ) |
49 |
44 48
|
mpbird |
|- ( ph -> ( A " dom A ) C_ { 0 } ) |
50 |
17 49
|
eqsstrrid |
|- ( ph -> ran A C_ { 0 } ) |
51 |
|
df-f |
|- ( A : NN0 --> { 0 } <-> ( A Fn NN0 /\ ran A C_ { 0 } ) ) |
52 |
16 50 51
|
sylanbrc |
|- ( ph -> A : NN0 --> { 0 } ) |
53 |
|
c0ex |
|- 0 e. _V |
54 |
53
|
fconst2 |
|- ( A : NN0 --> { 0 } <-> A = ( NN0 X. { 0 } ) ) |
55 |
52 54
|
sylib |
|- ( ph -> A = ( NN0 X. { 0 } ) ) |