| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyeq0.1 |  |-  ( ph -> S C_ CC ) | 
						
							| 2 |  | plyeq0.2 |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 |  | plyeq0.3 |  |-  ( ph -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) | 
						
							| 4 |  | plyeq0.4 |  |-  ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 5 |  | plyeq0.5 |  |-  ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 6 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 7 | 6 | snssd |  |-  ( ph -> { 0 } C_ CC ) | 
						
							| 8 | 1 7 | unssd |  |-  ( ph -> ( S u. { 0 } ) C_ CC ) | 
						
							| 9 |  | cnex |  |-  CC e. _V | 
						
							| 10 |  | ssexg |  |-  ( ( ( S u. { 0 } ) C_ CC /\ CC e. _V ) -> ( S u. { 0 } ) e. _V ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( ph -> ( S u. { 0 } ) e. _V ) | 
						
							| 12 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 13 |  | elmapg |  |-  ( ( ( S u. { 0 } ) e. _V /\ NN0 e. _V ) -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( ph -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) | 
						
							| 15 | 3 14 | mpbid |  |-  ( ph -> A : NN0 --> ( S u. { 0 } ) ) | 
						
							| 16 | 15 | ffnd |  |-  ( ph -> A Fn NN0 ) | 
						
							| 17 |  | imadmrn |  |-  ( A " dom A ) = ran A | 
						
							| 18 |  | fdm |  |-  ( A : NN0 --> ( S u. { 0 } ) -> dom A = NN0 ) | 
						
							| 19 |  | fimacnv |  |-  ( A : NN0 --> ( S u. { 0 } ) -> ( `' A " ( S u. { 0 } ) ) = NN0 ) | 
						
							| 20 | 18 19 | eqtr4d |  |-  ( A : NN0 --> ( S u. { 0 } ) -> dom A = ( `' A " ( S u. { 0 } ) ) ) | 
						
							| 21 | 15 20 | syl |  |-  ( ph -> dom A = ( `' A " ( S u. { 0 } ) ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) = (/) ) -> ( `' A " ( S \ { 0 } ) ) = (/) ) | 
						
							| 23 | 1 | adantr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> S C_ CC ) | 
						
							| 24 | 2 | adantr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> N e. NN0 ) | 
						
							| 25 | 3 | adantr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) | 
						
							| 26 | 4 | adantr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 27 | 5 | adantr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 28 |  | eqid |  |-  sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) = sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) | 
						
							| 30 | 23 24 25 26 27 28 29 | plyeq0lem |  |-  -. ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) | 
						
							| 31 | 30 | pm2.21i |  |-  ( ( ph /\ ( `' A " ( S \ { 0 } ) ) =/= (/) ) -> ( `' A " ( S \ { 0 } ) ) = (/) ) | 
						
							| 32 | 22 31 | pm2.61dane |  |-  ( ph -> ( `' A " ( S \ { 0 } ) ) = (/) ) | 
						
							| 33 | 32 | uneq1d |  |-  ( ph -> ( ( `' A " ( S \ { 0 } ) ) u. ( `' A " { 0 } ) ) = ( (/) u. ( `' A " { 0 } ) ) ) | 
						
							| 34 |  | undif1 |  |-  ( ( S \ { 0 } ) u. { 0 } ) = ( S u. { 0 } ) | 
						
							| 35 | 34 | imaeq2i |  |-  ( `' A " ( ( S \ { 0 } ) u. { 0 } ) ) = ( `' A " ( S u. { 0 } ) ) | 
						
							| 36 |  | imaundi |  |-  ( `' A " ( ( S \ { 0 } ) u. { 0 } ) ) = ( ( `' A " ( S \ { 0 } ) ) u. ( `' A " { 0 } ) ) | 
						
							| 37 | 35 36 | eqtr3i |  |-  ( `' A " ( S u. { 0 } ) ) = ( ( `' A " ( S \ { 0 } ) ) u. ( `' A " { 0 } ) ) | 
						
							| 38 |  | un0 |  |-  ( ( `' A " { 0 } ) u. (/) ) = ( `' A " { 0 } ) | 
						
							| 39 |  | uncom |  |-  ( ( `' A " { 0 } ) u. (/) ) = ( (/) u. ( `' A " { 0 } ) ) | 
						
							| 40 | 38 39 | eqtr3i |  |-  ( `' A " { 0 } ) = ( (/) u. ( `' A " { 0 } ) ) | 
						
							| 41 | 33 37 40 | 3eqtr4g |  |-  ( ph -> ( `' A " ( S u. { 0 } ) ) = ( `' A " { 0 } ) ) | 
						
							| 42 | 21 41 | eqtrd |  |-  ( ph -> dom A = ( `' A " { 0 } ) ) | 
						
							| 43 |  | eqimss |  |-  ( dom A = ( `' A " { 0 } ) -> dom A C_ ( `' A " { 0 } ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> dom A C_ ( `' A " { 0 } ) ) | 
						
							| 45 | 15 | ffund |  |-  ( ph -> Fun A ) | 
						
							| 46 |  | ssid |  |-  dom A C_ dom A | 
						
							| 47 |  | funimass3 |  |-  ( ( Fun A /\ dom A C_ dom A ) -> ( ( A " dom A ) C_ { 0 } <-> dom A C_ ( `' A " { 0 } ) ) ) | 
						
							| 48 | 45 46 47 | sylancl |  |-  ( ph -> ( ( A " dom A ) C_ { 0 } <-> dom A C_ ( `' A " { 0 } ) ) ) | 
						
							| 49 | 44 48 | mpbird |  |-  ( ph -> ( A " dom A ) C_ { 0 } ) | 
						
							| 50 | 17 49 | eqsstrrid |  |-  ( ph -> ran A C_ { 0 } ) | 
						
							| 51 |  | df-f |  |-  ( A : NN0 --> { 0 } <-> ( A Fn NN0 /\ ran A C_ { 0 } ) ) | 
						
							| 52 | 16 50 51 | sylanbrc |  |-  ( ph -> A : NN0 --> { 0 } ) | 
						
							| 53 |  | c0ex |  |-  0 e. _V | 
						
							| 54 | 53 | fconst2 |  |-  ( A : NN0 --> { 0 } <-> A = ( NN0 X. { 0 } ) ) | 
						
							| 55 | 52 54 | sylib |  |-  ( ph -> A = ( NN0 X. { 0 } ) ) |