| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyeq0.1 |  |-  ( ph -> S C_ CC ) | 
						
							| 2 |  | plyeq0.2 |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 |  | plyeq0.3 |  |-  ( ph -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) | 
						
							| 4 |  | plyeq0.4 |  |-  ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 5 |  | plyeq0.5 |  |-  ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 6 |  | plyeq0.6 |  |-  M = sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) | 
						
							| 7 |  | plyeq0.7 |  |-  ( ph -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) | 
						
							| 8 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 9 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 10 |  | fzfid |  |-  ( ph -> ( 0 ... N ) e. Fin ) | 
						
							| 11 |  | 1zzd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> 1 e. ZZ ) | 
						
							| 12 |  | 0cn |  |-  0 e. CC | 
						
							| 13 | 12 | a1i |  |-  ( ph -> 0 e. CC ) | 
						
							| 14 | 13 | snssd |  |-  ( ph -> { 0 } C_ CC ) | 
						
							| 15 | 1 14 | unssd |  |-  ( ph -> ( S u. { 0 } ) C_ CC ) | 
						
							| 16 |  | cnex |  |-  CC e. _V | 
						
							| 17 |  | ssexg |  |-  ( ( ( S u. { 0 } ) C_ CC /\ CC e. _V ) -> ( S u. { 0 } ) e. _V ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ph -> ( S u. { 0 } ) e. _V ) | 
						
							| 19 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 20 |  | elmapg |  |-  ( ( ( S u. { 0 } ) e. _V /\ NN0 e. _V ) -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) | 
						
							| 21 | 18 19 20 | sylancl |  |-  ( ph -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) | 
						
							| 22 | 3 21 | mpbid |  |-  ( ph -> A : NN0 --> ( S u. { 0 } ) ) | 
						
							| 23 | 22 15 | fssd |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 24 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 25 |  | ffvelcdm |  |-  ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 26 | 23 24 25 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( A ` k ) e. CC ) | 
						
							| 28 | 27 | abscld |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( abs ` ( A ` k ) ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( abs ` ( A ` k ) ) e. CC ) | 
						
							| 30 |  | divcnv |  |-  ( ( abs ` ( A ` k ) ) e. CC -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ~~> 0 ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ~~> 0 ) | 
						
							| 32 |  | nnex |  |-  NN e. _V | 
						
							| 33 | 32 | mptex |  |-  ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) e. _V | 
						
							| 34 | 33 | a1i |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) e. _V ) | 
						
							| 35 |  | oveq2 |  |-  ( n = m -> ( ( abs ` ( A ` k ) ) / n ) = ( ( abs ` ( A ` k ) ) / m ) ) | 
						
							| 36 |  | eqid |  |-  ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) = ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) | 
						
							| 37 |  | ovex |  |-  ( ( abs ` ( A ` k ) ) / m ) e. _V | 
						
							| 38 | 35 36 37 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) / m ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) / m ) ) | 
						
							| 40 |  | nndivre |  |-  ( ( ( abs ` ( A ` k ) ) e. RR /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) e. RR ) | 
						
							| 41 | 28 40 | sylan |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) e. RR ) | 
						
							| 42 | 39 41 | eqeltrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) e. RR ) | 
						
							| 43 |  | oveq1 |  |-  ( n = m -> ( n ^ ( k - M ) ) = ( m ^ ( k - M ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( n = m -> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 45 |  | eqid |  |-  ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) | 
						
							| 46 |  | ovex |  |-  ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) e. _V | 
						
							| 47 | 44 45 46 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 49 | 26 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( A ` k ) e. CC ) | 
						
							| 50 | 49 | abscld |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( A ` k ) ) e. RR ) | 
						
							| 51 |  | nnrp |  |-  ( m e. NN -> m e. RR+ ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. RR+ ) | 
						
							| 53 |  | elfzelz |  |-  ( k e. ( 0 ... N ) -> k e. ZZ ) | 
						
							| 54 |  | cnvimass |  |-  ( `' A " ( S \ { 0 } ) ) C_ dom A | 
						
							| 55 | 54 22 | fssdm |  |-  ( ph -> ( `' A " ( S \ { 0 } ) ) C_ NN0 ) | 
						
							| 56 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 57 | 55 56 | sstrdi |  |-  ( ph -> ( `' A " ( S \ { 0 } ) ) C_ ZZ ) | 
						
							| 58 | 2 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 59 | 22 | ffnd |  |-  ( ph -> A Fn NN0 ) | 
						
							| 60 |  | elpreima |  |-  ( A Fn NN0 -> ( z e. ( `' A " ( S \ { 0 } ) ) <-> ( z e. NN0 /\ ( A ` z ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 61 | 59 60 | syl |  |-  ( ph -> ( z e. ( `' A " ( S \ { 0 } ) ) <-> ( z e. NN0 /\ ( A ` z ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 62 | 61 | simplbda |  |-  ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( A ` z ) e. ( S \ { 0 } ) ) | 
						
							| 63 |  | eldifsni |  |-  ( ( A ` z ) e. ( S \ { 0 } ) -> ( A ` z ) =/= 0 ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( A ` z ) =/= 0 ) | 
						
							| 65 |  | fveq2 |  |-  ( k = z -> ( A ` k ) = ( A ` z ) ) | 
						
							| 66 | 65 | neeq1d |  |-  ( k = z -> ( ( A ` k ) =/= 0 <-> ( A ` z ) =/= 0 ) ) | 
						
							| 67 |  | breq1 |  |-  ( k = z -> ( k <_ N <-> z <_ N ) ) | 
						
							| 68 | 66 67 | imbi12d |  |-  ( k = z -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` z ) =/= 0 -> z <_ N ) ) ) | 
						
							| 69 |  | plyco0 |  |-  ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 70 | 2 23 69 | syl2anc |  |-  ( ph -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) | 
						
							| 71 | 4 70 | mpbid |  |-  ( ph -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) | 
						
							| 73 | 55 | sselda |  |-  ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> z e. NN0 ) | 
						
							| 74 | 68 72 73 | rspcdva |  |-  ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( ( A ` z ) =/= 0 -> z <_ N ) ) | 
						
							| 75 | 64 74 | mpd |  |-  ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> z <_ N ) | 
						
							| 76 | 75 | ralrimiva |  |-  ( ph -> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) | 
						
							| 77 |  | brralrspcev |  |-  ( ( N e. RR /\ A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) | 
						
							| 78 | 58 76 77 | syl2anc |  |-  ( ph -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) | 
						
							| 79 |  | suprzcl |  |-  ( ( ( `' A " ( S \ { 0 } ) ) C_ ZZ /\ ( `' A " ( S \ { 0 } ) ) =/= (/) /\ E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. ( `' A " ( S \ { 0 } ) ) ) | 
						
							| 80 | 57 7 78 79 | syl3anc |  |-  ( ph -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. ( `' A " ( S \ { 0 } ) ) ) | 
						
							| 81 | 6 80 | eqeltrid |  |-  ( ph -> M e. ( `' A " ( S \ { 0 } ) ) ) | 
						
							| 82 | 55 81 | sseldd |  |-  ( ph -> M e. NN0 ) | 
						
							| 83 | 82 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 84 |  | zsubcl |  |-  ( ( k e. ZZ /\ M e. ZZ ) -> ( k - M ) e. ZZ ) | 
						
							| 85 | 53 83 84 | syl2anr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( k - M ) e. ZZ ) | 
						
							| 86 | 85 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) e. ZZ ) | 
						
							| 87 | 52 86 | rpexpcld |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. RR+ ) | 
						
							| 88 | 87 | rpred |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. RR ) | 
						
							| 89 | 50 88 | remulcld |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) e. RR ) | 
						
							| 90 | 48 89 | eqeltrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. RR ) | 
						
							| 91 |  | nnrecre |  |-  ( m e. NN -> ( 1 / m ) e. RR ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( 1 / m ) e. RR ) | 
						
							| 93 | 27 | absge0d |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> 0 <_ ( abs ` ( A ` k ) ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( abs ` ( A ` k ) ) ) | 
						
							| 95 |  | nnre |  |-  ( m e. NN -> m e. RR ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. RR ) | 
						
							| 97 |  | nnge1 |  |-  ( m e. NN -> 1 <_ m ) | 
						
							| 98 | 97 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ m ) | 
						
							| 99 |  | 1red |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 e. RR ) | 
						
							| 100 | 86 | zred |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) e. RR ) | 
						
							| 101 |  | simplr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k < M ) | 
						
							| 102 | 53 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ZZ ) | 
						
							| 103 | 102 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. ZZ ) | 
						
							| 104 | 83 | ad3antrrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. ZZ ) | 
						
							| 105 |  | zltp1le |  |-  ( ( k e. ZZ /\ M e. ZZ ) -> ( k < M <-> ( k + 1 ) <_ M ) ) | 
						
							| 106 | 103 104 105 | syl2anc |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k < M <-> ( k + 1 ) <_ M ) ) | 
						
							| 107 | 101 106 | mpbid |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k + 1 ) <_ M ) | 
						
							| 108 | 24 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 109 | 108 | nn0red |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. RR ) | 
						
							| 110 | 109 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. RR ) | 
						
							| 111 | 82 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> M e. NN0 ) | 
						
							| 112 | 111 | nn0red |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> M e. RR ) | 
						
							| 113 | 112 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. RR ) | 
						
							| 114 | 110 99 113 | leaddsub2d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( k + 1 ) <_ M <-> 1 <_ ( M - k ) ) ) | 
						
							| 115 | 107 114 | mpbid |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ ( M - k ) ) | 
						
							| 116 | 109 | recnd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) | 
						
							| 117 | 116 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. CC ) | 
						
							| 118 | 112 | recnd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> M e. CC ) | 
						
							| 119 | 118 | ad2antrr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. CC ) | 
						
							| 120 | 117 119 | negsubdi2d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> -u ( k - M ) = ( M - k ) ) | 
						
							| 121 | 115 120 | breqtrrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ -u ( k - M ) ) | 
						
							| 122 | 99 100 121 | lenegcon2d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) <_ -u 1 ) | 
						
							| 123 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 124 |  | eluz |  |-  ( ( ( k - M ) e. ZZ /\ -u 1 e. ZZ ) -> ( -u 1 e. ( ZZ>= ` ( k - M ) ) <-> ( k - M ) <_ -u 1 ) ) | 
						
							| 125 | 86 123 124 | sylancl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( -u 1 e. ( ZZ>= ` ( k - M ) ) <-> ( k - M ) <_ -u 1 ) ) | 
						
							| 126 | 122 125 | mpbird |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> -u 1 e. ( ZZ>= ` ( k - M ) ) ) | 
						
							| 127 | 96 98 126 | leexp2ad |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) <_ ( m ^ -u 1 ) ) | 
						
							| 128 |  | nncn |  |-  ( m e. NN -> m e. CC ) | 
						
							| 129 | 128 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. CC ) | 
						
							| 130 |  | expn1 |  |-  ( m e. CC -> ( m ^ -u 1 ) = ( 1 / m ) ) | 
						
							| 131 | 129 130 | syl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ -u 1 ) = ( 1 / m ) ) | 
						
							| 132 | 127 131 | breqtrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) <_ ( 1 / m ) ) | 
						
							| 133 | 88 92 50 94 132 | lemul2ad |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) <_ ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) | 
						
							| 134 | 29 | adantr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( A ` k ) ) e. CC ) | 
						
							| 135 |  | nnne0 |  |-  ( m e. NN -> m =/= 0 ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m =/= 0 ) | 
						
							| 137 | 134 129 136 | divrecd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) = ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) | 
						
							| 138 | 39 137 | eqtrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) | 
						
							| 139 | 133 48 138 | 3brtr4d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) <_ ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) ) | 
						
							| 140 | 87 | rpge0d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( m ^ ( k - M ) ) ) | 
						
							| 141 | 50 88 94 140 | mulge0d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 142 | 141 48 | breqtrrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) | 
						
							| 143 | 8 11 31 34 42 90 139 142 | climsqz2 |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) | 
						
							| 144 | 32 | mptex |  |-  ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) e. _V | 
						
							| 145 | 144 | a1i |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) e. _V ) | 
						
							| 146 | 43 | oveq2d |  |-  ( n = m -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 147 |  | eqid |  |-  ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) | 
						
							| 148 |  | ovex |  |-  ( ( A ` k ) x. ( m ^ ( k - M ) ) ) e. _V | 
						
							| 149 | 146 147 148 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 150 | 149 | ad2antlr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 151 | 23 | adantr |  |-  ( ( ph /\ m e. NN ) -> A : NN0 --> CC ) | 
						
							| 152 | 151 24 25 | syl2an |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 153 | 128 | ad2antlr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> m e. CC ) | 
						
							| 154 | 135 | ad2antlr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> m =/= 0 ) | 
						
							| 155 | 83 | adantr |  |-  ( ( ph /\ m e. NN ) -> M e. ZZ ) | 
						
							| 156 | 53 155 84 | syl2anr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( k - M ) e. ZZ ) | 
						
							| 157 | 153 154 156 | expclzd |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ ( k - M ) ) e. CC ) | 
						
							| 158 | 152 157 | mulcld |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ ( k - M ) ) ) e. CC ) | 
						
							| 159 | 150 158 | eqeltrd |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) | 
						
							| 160 | 159 | an32s |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) | 
						
							| 161 | 160 | adantlr |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) | 
						
							| 162 | 88 | recnd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. CC ) | 
						
							| 163 | 49 162 | absmuld |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( abs ` ( m ^ ( k - M ) ) ) ) ) | 
						
							| 164 | 88 140 | absidd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( m ^ ( k - M ) ) ) = ( m ^ ( k - M ) ) ) | 
						
							| 165 | 164 | oveq2d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( abs ` ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 166 | 163 165 | eqtrd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 167 | 149 | adantl |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) | 
						
							| 168 | 167 | fveq2d |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) = ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) ) | 
						
							| 169 | 166 168 48 | 3eqtr4rd |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( abs ` ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) ) | 
						
							| 170 | 8 11 145 34 161 169 | climabs0 |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 <-> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) ) | 
						
							| 171 | 143 170 | mpbird |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) | 
						
							| 172 | 109 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k e. RR ) | 
						
							| 173 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k < M ) | 
						
							| 174 | 172 173 | ltned |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k =/= M ) | 
						
							| 175 |  | velsn |  |-  ( k e. { M } <-> k = M ) | 
						
							| 176 | 175 | necon3bbii |  |-  ( -. k e. { M } <-> k =/= M ) | 
						
							| 177 | 174 176 | sylibr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> -. k e. { M } ) | 
						
							| 178 | 177 | iffalsed |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> if ( k e. { M } , ( A ` k ) , 0 ) = 0 ) | 
						
							| 179 | 171 178 | breqtrrd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 180 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 181 | 180 | ad2antlr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> n e. CC ) | 
						
							| 182 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 183 | 182 | ad2antlr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> n =/= 0 ) | 
						
							| 184 | 85 | ad3antrrr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( k - M ) e. ZZ ) | 
						
							| 185 | 181 183 184 | expclzd |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( n ^ ( k - M ) ) e. CC ) | 
						
							| 186 | 185 | mul02d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( 0 x. ( n ^ ( k - M ) ) ) = 0 ) | 
						
							| 187 |  | simpr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( A ` k ) = 0 ) | 
						
							| 188 | 187 | oveq1d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( 0 x. ( n ^ ( k - M ) ) ) ) | 
						
							| 189 | 187 | ifeq1d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = if ( k e. { M } , 0 , 0 ) ) | 
						
							| 190 |  | ifid |  |-  if ( k e. { M } , 0 , 0 ) = 0 | 
						
							| 191 | 189 190 | eqtrdi |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = 0 ) | 
						
							| 192 | 186 188 191 | 3eqtr4d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 193 | 26 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( A ` k ) e. CC ) | 
						
							| 194 | 193 | ad2antrr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. CC ) | 
						
							| 195 | 194 | mulridd |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. 1 ) = ( A ` k ) ) | 
						
							| 196 |  | nn0ssre |  |-  NN0 C_ RR | 
						
							| 197 | 55 196 | sstrdi |  |-  ( ph -> ( `' A " ( S \ { 0 } ) ) C_ RR ) | 
						
							| 198 | 197 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( `' A " ( S \ { 0 } ) ) C_ RR ) | 
						
							| 199 | 7 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) | 
						
							| 200 | 78 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) | 
						
							| 201 | 24 | ad2antlr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k e. NN0 ) | 
						
							| 202 |  | ffvelcdm |  |-  ( ( A : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( A ` k ) e. ( S u. { 0 } ) ) | 
						
							| 203 | 22 24 202 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. ( S u. { 0 } ) ) | 
						
							| 204 | 203 | anim1i |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) e. ( S u. { 0 } ) /\ ( A ` k ) =/= 0 ) ) | 
						
							| 205 |  | eldifsn |  |-  ( ( A ` k ) e. ( ( S u. { 0 } ) \ { 0 } ) <-> ( ( A ` k ) e. ( S u. { 0 } ) /\ ( A ` k ) =/= 0 ) ) | 
						
							| 206 | 204 205 | sylibr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. ( ( S u. { 0 } ) \ { 0 } ) ) | 
						
							| 207 |  | difun2 |  |-  ( ( S u. { 0 } ) \ { 0 } ) = ( S \ { 0 } ) | 
						
							| 208 | 206 207 | eleqtrdi |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. ( S \ { 0 } ) ) | 
						
							| 209 |  | elpreima |  |-  ( A Fn NN0 -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 210 | 59 209 | syl |  |-  ( ph -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 211 | 210 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 212 | 201 208 211 | mpbir2and |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k e. ( `' A " ( S \ { 0 } ) ) ) | 
						
							| 213 | 198 199 200 212 | suprubd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k <_ sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) ) | 
						
							| 214 | 213 6 | breqtrrdi |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k <_ M ) | 
						
							| 215 | 214 | ad4ant14 |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k <_ M ) | 
						
							| 216 |  | simpllr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M <_ k ) | 
						
							| 217 | 109 | ad3antrrr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k e. RR ) | 
						
							| 218 | 112 | ad3antrrr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M e. RR ) | 
						
							| 219 | 217 218 | letri3d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k = M <-> ( k <_ M /\ M <_ k ) ) ) | 
						
							| 220 | 215 216 219 | mpbir2and |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k = M ) | 
						
							| 221 | 220 | oveq1d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k - M ) = ( M - M ) ) | 
						
							| 222 | 118 | ad3antrrr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M e. CC ) | 
						
							| 223 | 222 | subidd |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( M - M ) = 0 ) | 
						
							| 224 | 221 223 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k - M ) = 0 ) | 
						
							| 225 | 224 | oveq2d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ ( k - M ) ) = ( n ^ 0 ) ) | 
						
							| 226 | 180 | ad2antlr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> n e. CC ) | 
						
							| 227 | 226 | exp0d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ 0 ) = 1 ) | 
						
							| 228 | 225 227 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ ( k - M ) ) = 1 ) | 
						
							| 229 | 228 | oveq2d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( ( A ` k ) x. 1 ) ) | 
						
							| 230 | 220 175 | sylibr |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k e. { M } ) | 
						
							| 231 | 230 | iftrued |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = ( A ` k ) ) | 
						
							| 232 | 195 229 231 | 3eqtr4d |  |-  ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 233 | 192 232 | pm2.61dane |  |-  ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 234 | 233 | mpteq2dva |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> if ( k e. { M } , ( A ` k ) , 0 ) ) ) | 
						
							| 235 |  | fconstmpt |  |-  ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) = ( n e. NN |-> if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 236 | 234 235 | eqtr4di |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ) | 
						
							| 237 |  | ifcl |  |-  ( ( ( A ` k ) e. CC /\ 0 e. CC ) -> if ( k e. { M } , ( A ` k ) , 0 ) e. CC ) | 
						
							| 238 | 193 12 237 | sylancl |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> if ( k e. { M } , ( A ` k ) , 0 ) e. CC ) | 
						
							| 239 |  | 1z |  |-  1 e. ZZ | 
						
							| 240 | 8 | eqimss2i |  |-  ( ZZ>= ` 1 ) C_ NN | 
						
							| 241 | 240 32 | climconst2 |  |-  ( ( if ( k e. { M } , ( A ` k ) , 0 ) e. CC /\ 1 e. ZZ ) -> ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 242 | 238 239 241 | sylancl |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 243 | 236 242 | eqbrtrd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 244 | 179 243 109 112 | ltlecasei |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 245 |  | snex |  |-  { 0 } e. _V | 
						
							| 246 | 32 245 | xpex |  |-  ( NN X. { 0 } ) e. _V | 
						
							| 247 | 246 | a1i |  |-  ( ph -> ( NN X. { 0 } ) e. _V ) | 
						
							| 248 | 160 | anasss |  |-  ( ( ph /\ ( k e. ( 0 ... N ) /\ m e. NN ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) | 
						
							| 249 | 5 | fveq1d |  |-  ( ph -> ( 0p ` m ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) ) | 
						
							| 250 | 249 | adantr |  |-  ( ( ph /\ m e. NN ) -> ( 0p ` m ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) ) | 
						
							| 251 | 128 | adantl |  |-  ( ( ph /\ m e. NN ) -> m e. CC ) | 
						
							| 252 |  | 0pval |  |-  ( m e. CC -> ( 0p ` m ) = 0 ) | 
						
							| 253 | 251 252 | syl |  |-  ( ( ph /\ m e. NN ) -> ( 0p ` m ) = 0 ) | 
						
							| 254 |  | oveq1 |  |-  ( z = m -> ( z ^ k ) = ( m ^ k ) ) | 
						
							| 255 | 254 | oveq2d |  |-  ( z = m -> ( ( A ` k ) x. ( z ^ k ) ) = ( ( A ` k ) x. ( m ^ k ) ) ) | 
						
							| 256 | 255 | sumeq2sdv |  |-  ( z = m -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) | 
						
							| 257 |  | eqid |  |-  ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) | 
						
							| 258 |  | sumex |  |-  sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) e. _V | 
						
							| 259 | 256 257 258 | fvmpt |  |-  ( m e. CC -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) | 
						
							| 260 | 251 259 | syl |  |-  ( ( ph /\ m e. NN ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) | 
						
							| 261 | 250 253 260 | 3eqtr3d |  |-  ( ( ph /\ m e. NN ) -> 0 = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) | 
						
							| 262 | 261 | oveq1d |  |-  ( ( ph /\ m e. NN ) -> ( 0 / ( m ^ M ) ) = ( sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) | 
						
							| 263 |  | expcl |  |-  ( ( m e. CC /\ M e. NN0 ) -> ( m ^ M ) e. CC ) | 
						
							| 264 | 128 82 263 | syl2anr |  |-  ( ( ph /\ m e. NN ) -> ( m ^ M ) e. CC ) | 
						
							| 265 | 135 | adantl |  |-  ( ( ph /\ m e. NN ) -> m =/= 0 ) | 
						
							| 266 | 251 265 155 | expne0d |  |-  ( ( ph /\ m e. NN ) -> ( m ^ M ) =/= 0 ) | 
						
							| 267 | 264 266 | div0d |  |-  ( ( ph /\ m e. NN ) -> ( 0 / ( m ^ M ) ) = 0 ) | 
						
							| 268 |  | fzfid |  |-  ( ( ph /\ m e. NN ) -> ( 0 ... N ) e. Fin ) | 
						
							| 269 |  | expcl |  |-  ( ( m e. CC /\ k e. NN0 ) -> ( m ^ k ) e. CC ) | 
						
							| 270 | 251 24 269 | syl2an |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ k ) e. CC ) | 
						
							| 271 | 152 270 | mulcld |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ k ) ) e. CC ) | 
						
							| 272 | 268 264 271 266 | fsumdivc |  |-  ( ( ph /\ m e. NN ) -> ( sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) | 
						
							| 273 | 262 267 272 | 3eqtr3d |  |-  ( ( ph /\ m e. NN ) -> 0 = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) | 
						
							| 274 |  | fvconst2g |  |-  ( ( 0 e. CC /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = 0 ) | 
						
							| 275 | 13 274 | sylan |  |-  ( ( ph /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = 0 ) | 
						
							| 276 | 155 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> M e. ZZ ) | 
						
							| 277 | 53 | adantl |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> k e. ZZ ) | 
						
							| 278 | 153 154 276 277 | expsubd |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ ( k - M ) ) = ( ( m ^ k ) / ( m ^ M ) ) ) | 
						
							| 279 | 278 | oveq2d |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ ( k - M ) ) ) = ( ( A ` k ) x. ( ( m ^ k ) / ( m ^ M ) ) ) ) | 
						
							| 280 | 264 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ M ) e. CC ) | 
						
							| 281 | 266 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ M ) =/= 0 ) | 
						
							| 282 | 152 270 280 281 | divassd |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) = ( ( A ` k ) x. ( ( m ^ k ) / ( m ^ M ) ) ) ) | 
						
							| 283 | 279 150 282 | 3eqtr4d |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) | 
						
							| 284 | 283 | sumeq2dv |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... N ) ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) | 
						
							| 285 | 273 275 284 | 3eqtr4d |  |-  ( ( ph /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = sum_ k e. ( 0 ... N ) ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) | 
						
							| 286 | 8 9 10 244 247 248 285 | climfsum |  |-  ( ph -> ( NN X. { 0 } ) ~~> sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 287 |  | suprleub |  |-  ( ( ( ( `' A " ( S \ { 0 } ) ) C_ RR /\ ( `' A " ( S \ { 0 } ) ) =/= (/) /\ E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) /\ N e. RR ) -> ( sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N <-> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) ) | 
						
							| 288 | 197 7 78 58 287 | syl31anc |  |-  ( ph -> ( sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N <-> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) ) | 
						
							| 289 | 76 288 | mpbird |  |-  ( ph -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N ) | 
						
							| 290 | 6 289 | eqbrtrid |  |-  ( ph -> M <_ N ) | 
						
							| 291 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 292 | 82 291 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 293 | 2 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 294 |  | elfz5 |  |-  ( ( M e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( M e. ( 0 ... N ) <-> M <_ N ) ) | 
						
							| 295 | 292 293 294 | syl2anc |  |-  ( ph -> ( M e. ( 0 ... N ) <-> M <_ N ) ) | 
						
							| 296 | 290 295 | mpbird |  |-  ( ph -> M e. ( 0 ... N ) ) | 
						
							| 297 | 296 | snssd |  |-  ( ph -> { M } C_ ( 0 ... N ) ) | 
						
							| 298 | 23 82 | ffvelcdmd |  |-  ( ph -> ( A ` M ) e. CC ) | 
						
							| 299 |  | elsni |  |-  ( k e. { M } -> k = M ) | 
						
							| 300 | 299 | fveq2d |  |-  ( k e. { M } -> ( A ` k ) = ( A ` M ) ) | 
						
							| 301 | 300 | eleq1d |  |-  ( k e. { M } -> ( ( A ` k ) e. CC <-> ( A ` M ) e. CC ) ) | 
						
							| 302 | 298 301 | syl5ibrcom |  |-  ( ph -> ( k e. { M } -> ( A ` k ) e. CC ) ) | 
						
							| 303 | 302 | ralrimiv |  |-  ( ph -> A. k e. { M } ( A ` k ) e. CC ) | 
						
							| 304 | 10 | olcd |  |-  ( ph -> ( ( 0 ... N ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... N ) e. Fin ) ) | 
						
							| 305 |  | sumss2 |  |-  ( ( ( { M } C_ ( 0 ... N ) /\ A. k e. { M } ( A ` k ) e. CC ) /\ ( ( 0 ... N ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... N ) e. Fin ) ) -> sum_ k e. { M } ( A ` k ) = sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 306 | 297 303 304 305 | syl21anc |  |-  ( ph -> sum_ k e. { M } ( A ` k ) = sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) | 
						
							| 307 |  | ltso |  |-  < Or RR | 
						
							| 308 | 307 | supex |  |-  sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. _V | 
						
							| 309 | 6 308 | eqeltri |  |-  M e. _V | 
						
							| 310 |  | fveq2 |  |-  ( k = M -> ( A ` k ) = ( A ` M ) ) | 
						
							| 311 | 310 | sumsn |  |-  ( ( M e. _V /\ ( A ` M ) e. CC ) -> sum_ k e. { M } ( A ` k ) = ( A ` M ) ) | 
						
							| 312 | 309 298 311 | sylancr |  |-  ( ph -> sum_ k e. { M } ( A ` k ) = ( A ` M ) ) | 
						
							| 313 | 306 312 | eqtr3d |  |-  ( ph -> sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) = ( A ` M ) ) | 
						
							| 314 | 286 313 | breqtrd |  |-  ( ph -> ( NN X. { 0 } ) ~~> ( A ` M ) ) | 
						
							| 315 | 240 32 | climconst2 |  |-  ( ( 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ~~> 0 ) | 
						
							| 316 | 12 239 315 | mp2an |  |-  ( NN X. { 0 } ) ~~> 0 | 
						
							| 317 |  | climuni |  |-  ( ( ( NN X. { 0 } ) ~~> ( A ` M ) /\ ( NN X. { 0 } ) ~~> 0 ) -> ( A ` M ) = 0 ) | 
						
							| 318 | 314 316 317 | sylancl |  |-  ( ph -> ( A ` M ) = 0 ) | 
						
							| 319 |  | fvex |  |-  ( A ` M ) e. _V | 
						
							| 320 | 319 | elsn |  |-  ( ( A ` M ) e. { 0 } <-> ( A ` M ) = 0 ) | 
						
							| 321 | 318 320 | sylibr |  |-  ( ph -> ( A ` M ) e. { 0 } ) | 
						
							| 322 |  | elpreima |  |-  ( A Fn NN0 -> ( M e. ( `' A " ( S \ { 0 } ) ) <-> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 323 | 59 322 | syl |  |-  ( ph -> ( M e. ( `' A " ( S \ { 0 } ) ) <-> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) ) | 
						
							| 324 | 81 323 | mpbid |  |-  ( ph -> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) | 
						
							| 325 | 324 | simprd |  |-  ( ph -> ( A ` M ) e. ( S \ { 0 } ) ) | 
						
							| 326 | 325 | eldifbd |  |-  ( ph -> -. ( A ` M ) e. { 0 } ) | 
						
							| 327 | 321 326 | pm2.65i |  |-  -. ph |