Step |
Hyp |
Ref |
Expression |
1 |
|
plyeq0.1 |
|- ( ph -> S C_ CC ) |
2 |
|
plyeq0.2 |
|- ( ph -> N e. NN0 ) |
3 |
|
plyeq0.3 |
|- ( ph -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) |
4 |
|
plyeq0.4 |
|- ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
5 |
|
plyeq0.5 |
|- ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
6 |
|
plyeq0.6 |
|- M = sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) |
7 |
|
plyeq0.7 |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) |
8 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
9 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
10 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
11 |
|
1zzd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> 1 e. ZZ ) |
12 |
|
0cn |
|- 0 e. CC |
13 |
12
|
a1i |
|- ( ph -> 0 e. CC ) |
14 |
13
|
snssd |
|- ( ph -> { 0 } C_ CC ) |
15 |
1 14
|
unssd |
|- ( ph -> ( S u. { 0 } ) C_ CC ) |
16 |
|
cnex |
|- CC e. _V |
17 |
|
ssexg |
|- ( ( ( S u. { 0 } ) C_ CC /\ CC e. _V ) -> ( S u. { 0 } ) e. _V ) |
18 |
15 16 17
|
sylancl |
|- ( ph -> ( S u. { 0 } ) e. _V ) |
19 |
|
nn0ex |
|- NN0 e. _V |
20 |
|
elmapg |
|- ( ( ( S u. { 0 } ) e. _V /\ NN0 e. _V ) -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) |
21 |
18 19 20
|
sylancl |
|- ( ph -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) |
22 |
3 21
|
mpbid |
|- ( ph -> A : NN0 --> ( S u. { 0 } ) ) |
23 |
22 15
|
fssd |
|- ( ph -> A : NN0 --> CC ) |
24 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
25 |
|
ffvelrn |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
26 |
23 24 25
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
27 |
26
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( A ` k ) e. CC ) |
28 |
27
|
abscld |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( abs ` ( A ` k ) ) e. RR ) |
29 |
28
|
recnd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( abs ` ( A ` k ) ) e. CC ) |
30 |
|
divcnv |
|- ( ( abs ` ( A ` k ) ) e. CC -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ~~> 0 ) |
31 |
29 30
|
syl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ~~> 0 ) |
32 |
|
nnex |
|- NN e. _V |
33 |
32
|
mptex |
|- ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) e. _V |
34 |
33
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) e. _V ) |
35 |
|
oveq2 |
|- ( n = m -> ( ( abs ` ( A ` k ) ) / n ) = ( ( abs ` ( A ` k ) ) / m ) ) |
36 |
|
eqid |
|- ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) = ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) |
37 |
|
ovex |
|- ( ( abs ` ( A ` k ) ) / m ) e. _V |
38 |
35 36 37
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) / m ) ) |
39 |
38
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) / m ) ) |
40 |
|
nndivre |
|- ( ( ( abs ` ( A ` k ) ) e. RR /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) e. RR ) |
41 |
28 40
|
sylan |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) e. RR ) |
42 |
39 41
|
eqeltrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) e. RR ) |
43 |
|
oveq1 |
|- ( n = m -> ( n ^ ( k - M ) ) = ( m ^ ( k - M ) ) ) |
44 |
43
|
oveq2d |
|- ( n = m -> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
45 |
|
eqid |
|- ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) |
46 |
|
ovex |
|- ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) e. _V |
47 |
44 45 46
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
48 |
47
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
49 |
26
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( A ` k ) e. CC ) |
50 |
49
|
abscld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( A ` k ) ) e. RR ) |
51 |
|
nnrp |
|- ( m e. NN -> m e. RR+ ) |
52 |
51
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. RR+ ) |
53 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
54 |
|
cnvimass |
|- ( `' A " ( S \ { 0 } ) ) C_ dom A |
55 |
54 22
|
fssdm |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) C_ NN0 ) |
56 |
|
nn0ssz |
|- NN0 C_ ZZ |
57 |
55 56
|
sstrdi |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) C_ ZZ ) |
58 |
2
|
nn0red |
|- ( ph -> N e. RR ) |
59 |
22
|
ffnd |
|- ( ph -> A Fn NN0 ) |
60 |
|
elpreima |
|- ( A Fn NN0 -> ( z e. ( `' A " ( S \ { 0 } ) ) <-> ( z e. NN0 /\ ( A ` z ) e. ( S \ { 0 } ) ) ) ) |
61 |
59 60
|
syl |
|- ( ph -> ( z e. ( `' A " ( S \ { 0 } ) ) <-> ( z e. NN0 /\ ( A ` z ) e. ( S \ { 0 } ) ) ) ) |
62 |
61
|
simplbda |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( A ` z ) e. ( S \ { 0 } ) ) |
63 |
|
eldifsni |
|- ( ( A ` z ) e. ( S \ { 0 } ) -> ( A ` z ) =/= 0 ) |
64 |
62 63
|
syl |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( A ` z ) =/= 0 ) |
65 |
|
fveq2 |
|- ( k = z -> ( A ` k ) = ( A ` z ) ) |
66 |
65
|
neeq1d |
|- ( k = z -> ( ( A ` k ) =/= 0 <-> ( A ` z ) =/= 0 ) ) |
67 |
|
breq1 |
|- ( k = z -> ( k <_ N <-> z <_ N ) ) |
68 |
66 67
|
imbi12d |
|- ( k = z -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` z ) =/= 0 -> z <_ N ) ) ) |
69 |
|
plyco0 |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |
70 |
2 23 69
|
syl2anc |
|- ( ph -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |
71 |
4 70
|
mpbid |
|- ( ph -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
73 |
55
|
sselda |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> z e. NN0 ) |
74 |
68 72 73
|
rspcdva |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( ( A ` z ) =/= 0 -> z <_ N ) ) |
75 |
64 74
|
mpd |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> z <_ N ) |
76 |
75
|
ralrimiva |
|- ( ph -> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) |
77 |
|
brralrspcev |
|- ( ( N e. RR /\ A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) |
78 |
58 76 77
|
syl2anc |
|- ( ph -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) |
79 |
|
suprzcl |
|- ( ( ( `' A " ( S \ { 0 } ) ) C_ ZZ /\ ( `' A " ( S \ { 0 } ) ) =/= (/) /\ E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. ( `' A " ( S \ { 0 } ) ) ) |
80 |
57 7 78 79
|
syl3anc |
|- ( ph -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. ( `' A " ( S \ { 0 } ) ) ) |
81 |
6 80
|
eqeltrid |
|- ( ph -> M e. ( `' A " ( S \ { 0 } ) ) ) |
82 |
55 81
|
sseldd |
|- ( ph -> M e. NN0 ) |
83 |
82
|
nn0zd |
|- ( ph -> M e. ZZ ) |
84 |
|
zsubcl |
|- ( ( k e. ZZ /\ M e. ZZ ) -> ( k - M ) e. ZZ ) |
85 |
53 83 84
|
syl2anr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( k - M ) e. ZZ ) |
86 |
85
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) e. ZZ ) |
87 |
52 86
|
rpexpcld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. RR+ ) |
88 |
87
|
rpred |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. RR ) |
89 |
50 88
|
remulcld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) e. RR ) |
90 |
48 89
|
eqeltrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. RR ) |
91 |
|
nnrecre |
|- ( m e. NN -> ( 1 / m ) e. RR ) |
92 |
91
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( 1 / m ) e. RR ) |
93 |
27
|
absge0d |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> 0 <_ ( abs ` ( A ` k ) ) ) |
94 |
93
|
adantr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( abs ` ( A ` k ) ) ) |
95 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
96 |
95
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. RR ) |
97 |
|
nnge1 |
|- ( m e. NN -> 1 <_ m ) |
98 |
97
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ m ) |
99 |
|
1red |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 e. RR ) |
100 |
86
|
zred |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) e. RR ) |
101 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k < M ) |
102 |
53
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ZZ ) |
103 |
102
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. ZZ ) |
104 |
83
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. ZZ ) |
105 |
|
zltp1le |
|- ( ( k e. ZZ /\ M e. ZZ ) -> ( k < M <-> ( k + 1 ) <_ M ) ) |
106 |
103 104 105
|
syl2anc |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k < M <-> ( k + 1 ) <_ M ) ) |
107 |
101 106
|
mpbid |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k + 1 ) <_ M ) |
108 |
24
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
109 |
108
|
nn0red |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. RR ) |
110 |
109
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. RR ) |
111 |
82
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> M e. NN0 ) |
112 |
111
|
nn0red |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> M e. RR ) |
113 |
112
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. RR ) |
114 |
110 99 113
|
leaddsub2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( k + 1 ) <_ M <-> 1 <_ ( M - k ) ) ) |
115 |
107 114
|
mpbid |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ ( M - k ) ) |
116 |
109
|
recnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) |
117 |
116
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. CC ) |
118 |
112
|
recnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> M e. CC ) |
119 |
118
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. CC ) |
120 |
117 119
|
negsubdi2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> -u ( k - M ) = ( M - k ) ) |
121 |
115 120
|
breqtrrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ -u ( k - M ) ) |
122 |
99 100 121
|
lenegcon2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) <_ -u 1 ) |
123 |
|
neg1z |
|- -u 1 e. ZZ |
124 |
|
eluz |
|- ( ( ( k - M ) e. ZZ /\ -u 1 e. ZZ ) -> ( -u 1 e. ( ZZ>= ` ( k - M ) ) <-> ( k - M ) <_ -u 1 ) ) |
125 |
86 123 124
|
sylancl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( -u 1 e. ( ZZ>= ` ( k - M ) ) <-> ( k - M ) <_ -u 1 ) ) |
126 |
122 125
|
mpbird |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> -u 1 e. ( ZZ>= ` ( k - M ) ) ) |
127 |
96 98 126
|
leexp2ad |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) <_ ( m ^ -u 1 ) ) |
128 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
129 |
128
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. CC ) |
130 |
|
expn1 |
|- ( m e. CC -> ( m ^ -u 1 ) = ( 1 / m ) ) |
131 |
129 130
|
syl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ -u 1 ) = ( 1 / m ) ) |
132 |
127 131
|
breqtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) <_ ( 1 / m ) ) |
133 |
88 92 50 94 132
|
lemul2ad |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) <_ ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) |
134 |
29
|
adantr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( A ` k ) ) e. CC ) |
135 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
136 |
135
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m =/= 0 ) |
137 |
134 129 136
|
divrecd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) = ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) |
138 |
39 137
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) |
139 |
133 48 138
|
3brtr4d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) <_ ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) ) |
140 |
87
|
rpge0d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( m ^ ( k - M ) ) ) |
141 |
50 88 94 140
|
mulge0d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
142 |
141 48
|
breqtrrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) |
143 |
8 11 31 34 42 90 139 142
|
climsqz2 |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) |
144 |
32
|
mptex |
|- ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) e. _V |
145 |
144
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) e. _V ) |
146 |
43
|
oveq2d |
|- ( n = m -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
147 |
|
eqid |
|- ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) |
148 |
|
ovex |
|- ( ( A ` k ) x. ( m ^ ( k - M ) ) ) e. _V |
149 |
146 147 148
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
150 |
149
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
151 |
23
|
adantr |
|- ( ( ph /\ m e. NN ) -> A : NN0 --> CC ) |
152 |
151 24 25
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
153 |
128
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> m e. CC ) |
154 |
135
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> m =/= 0 ) |
155 |
83
|
adantr |
|- ( ( ph /\ m e. NN ) -> M e. ZZ ) |
156 |
53 155 84
|
syl2anr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( k - M ) e. ZZ ) |
157 |
153 154 156
|
expclzd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ ( k - M ) ) e. CC ) |
158 |
152 157
|
mulcld |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ ( k - M ) ) ) e. CC ) |
159 |
150 158
|
eqeltrd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
160 |
159
|
an32s |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
161 |
160
|
adantlr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
162 |
88
|
recnd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. CC ) |
163 |
49 162
|
absmuld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( abs ` ( m ^ ( k - M ) ) ) ) ) |
164 |
88 140
|
absidd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( m ^ ( k - M ) ) ) = ( m ^ ( k - M ) ) ) |
165 |
164
|
oveq2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( abs ` ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
166 |
163 165
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
167 |
149
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
168 |
167
|
fveq2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) = ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) ) |
169 |
166 168 48
|
3eqtr4rd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( abs ` ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) ) |
170 |
8 11 145 34 161 169
|
climabs0 |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 <-> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) ) |
171 |
143 170
|
mpbird |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) |
172 |
109
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k e. RR ) |
173 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k < M ) |
174 |
172 173
|
ltned |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k =/= M ) |
175 |
|
velsn |
|- ( k e. { M } <-> k = M ) |
176 |
175
|
necon3bbii |
|- ( -. k e. { M } <-> k =/= M ) |
177 |
174 176
|
sylibr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> -. k e. { M } ) |
178 |
177
|
iffalsed |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> if ( k e. { M } , ( A ` k ) , 0 ) = 0 ) |
179 |
171 178
|
breqtrrd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
180 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
181 |
180
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> n e. CC ) |
182 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
183 |
182
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> n =/= 0 ) |
184 |
85
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( k - M ) e. ZZ ) |
185 |
181 183 184
|
expclzd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( n ^ ( k - M ) ) e. CC ) |
186 |
185
|
mul02d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( 0 x. ( n ^ ( k - M ) ) ) = 0 ) |
187 |
|
simpr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( A ` k ) = 0 ) |
188 |
187
|
oveq1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( 0 x. ( n ^ ( k - M ) ) ) ) |
189 |
187
|
ifeq1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = if ( k e. { M } , 0 , 0 ) ) |
190 |
|
ifid |
|- if ( k e. { M } , 0 , 0 ) = 0 |
191 |
189 190
|
eqtrdi |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = 0 ) |
192 |
186 188 191
|
3eqtr4d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) |
193 |
26
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( A ` k ) e. CC ) |
194 |
193
|
ad2antrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. CC ) |
195 |
194
|
mulid1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. 1 ) = ( A ` k ) ) |
196 |
|
nn0ssre |
|- NN0 C_ RR |
197 |
55 196
|
sstrdi |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) C_ RR ) |
198 |
197
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( `' A " ( S \ { 0 } ) ) C_ RR ) |
199 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) |
200 |
78
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) |
201 |
24
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k e. NN0 ) |
202 |
|
ffvelrn |
|- ( ( A : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( A ` k ) e. ( S u. { 0 } ) ) |
203 |
22 24 202
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. ( S u. { 0 } ) ) |
204 |
203
|
anim1i |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) e. ( S u. { 0 } ) /\ ( A ` k ) =/= 0 ) ) |
205 |
|
eldifsn |
|- ( ( A ` k ) e. ( ( S u. { 0 } ) \ { 0 } ) <-> ( ( A ` k ) e. ( S u. { 0 } ) /\ ( A ` k ) =/= 0 ) ) |
206 |
204 205
|
sylibr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. ( ( S u. { 0 } ) \ { 0 } ) ) |
207 |
|
difun2 |
|- ( ( S u. { 0 } ) \ { 0 } ) = ( S \ { 0 } ) |
208 |
206 207
|
eleqtrdi |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. ( S \ { 0 } ) ) |
209 |
|
elpreima |
|- ( A Fn NN0 -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) |
210 |
59 209
|
syl |
|- ( ph -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) |
211 |
210
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) |
212 |
201 208 211
|
mpbir2and |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k e. ( `' A " ( S \ { 0 } ) ) ) |
213 |
198 199 200 212
|
suprubd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k <_ sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) ) |
214 |
213 6
|
breqtrrdi |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k <_ M ) |
215 |
214
|
ad4ant14 |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k <_ M ) |
216 |
|
simpllr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M <_ k ) |
217 |
109
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k e. RR ) |
218 |
112
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M e. RR ) |
219 |
217 218
|
letri3d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k = M <-> ( k <_ M /\ M <_ k ) ) ) |
220 |
215 216 219
|
mpbir2and |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k = M ) |
221 |
220
|
oveq1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k - M ) = ( M - M ) ) |
222 |
118
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M e. CC ) |
223 |
222
|
subidd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( M - M ) = 0 ) |
224 |
221 223
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k - M ) = 0 ) |
225 |
224
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ ( k - M ) ) = ( n ^ 0 ) ) |
226 |
180
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> n e. CC ) |
227 |
226
|
exp0d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ 0 ) = 1 ) |
228 |
225 227
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ ( k - M ) ) = 1 ) |
229 |
228
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( ( A ` k ) x. 1 ) ) |
230 |
220 175
|
sylibr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k e. { M } ) |
231 |
230
|
iftrued |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = ( A ` k ) ) |
232 |
195 229 231
|
3eqtr4d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) |
233 |
192 232
|
pm2.61dane |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) |
234 |
233
|
mpteq2dva |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> if ( k e. { M } , ( A ` k ) , 0 ) ) ) |
235 |
|
fconstmpt |
|- ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) = ( n e. NN |-> if ( k e. { M } , ( A ` k ) , 0 ) ) |
236 |
234 235
|
eqtr4di |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ) |
237 |
|
ifcl |
|- ( ( ( A ` k ) e. CC /\ 0 e. CC ) -> if ( k e. { M } , ( A ` k ) , 0 ) e. CC ) |
238 |
193 12 237
|
sylancl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> if ( k e. { M } , ( A ` k ) , 0 ) e. CC ) |
239 |
|
1z |
|- 1 e. ZZ |
240 |
8
|
eqimss2i |
|- ( ZZ>= ` 1 ) C_ NN |
241 |
240 32
|
climconst2 |
|- ( ( if ( k e. { M } , ( A ` k ) , 0 ) e. CC /\ 1 e. ZZ ) -> ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
242 |
238 239 241
|
sylancl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
243 |
236 242
|
eqbrtrd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
244 |
179 243 109 112
|
ltlecasei |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
245 |
|
snex |
|- { 0 } e. _V |
246 |
32 245
|
xpex |
|- ( NN X. { 0 } ) e. _V |
247 |
246
|
a1i |
|- ( ph -> ( NN X. { 0 } ) e. _V ) |
248 |
160
|
anasss |
|- ( ( ph /\ ( k e. ( 0 ... N ) /\ m e. NN ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
249 |
5
|
fveq1d |
|- ( ph -> ( 0p ` m ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) ) |
250 |
249
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( 0p ` m ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) ) |
251 |
128
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
252 |
|
0pval |
|- ( m e. CC -> ( 0p ` m ) = 0 ) |
253 |
251 252
|
syl |
|- ( ( ph /\ m e. NN ) -> ( 0p ` m ) = 0 ) |
254 |
|
oveq1 |
|- ( z = m -> ( z ^ k ) = ( m ^ k ) ) |
255 |
254
|
oveq2d |
|- ( z = m -> ( ( A ` k ) x. ( z ^ k ) ) = ( ( A ` k ) x. ( m ^ k ) ) ) |
256 |
255
|
sumeq2sdv |
|- ( z = m -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
257 |
|
eqid |
|- ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) |
258 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) e. _V |
259 |
256 257 258
|
fvmpt |
|- ( m e. CC -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
260 |
251 259
|
syl |
|- ( ( ph /\ m e. NN ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
261 |
250 253 260
|
3eqtr3d |
|- ( ( ph /\ m e. NN ) -> 0 = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
262 |
261
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( 0 / ( m ^ M ) ) = ( sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
263 |
|
expcl |
|- ( ( m e. CC /\ M e. NN0 ) -> ( m ^ M ) e. CC ) |
264 |
128 82 263
|
syl2anr |
|- ( ( ph /\ m e. NN ) -> ( m ^ M ) e. CC ) |
265 |
135
|
adantl |
|- ( ( ph /\ m e. NN ) -> m =/= 0 ) |
266 |
251 265 155
|
expne0d |
|- ( ( ph /\ m e. NN ) -> ( m ^ M ) =/= 0 ) |
267 |
264 266
|
div0d |
|- ( ( ph /\ m e. NN ) -> ( 0 / ( m ^ M ) ) = 0 ) |
268 |
|
fzfid |
|- ( ( ph /\ m e. NN ) -> ( 0 ... N ) e. Fin ) |
269 |
|
expcl |
|- ( ( m e. CC /\ k e. NN0 ) -> ( m ^ k ) e. CC ) |
270 |
251 24 269
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ k ) e. CC ) |
271 |
152 270
|
mulcld |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ k ) ) e. CC ) |
272 |
268 264 271 266
|
fsumdivc |
|- ( ( ph /\ m e. NN ) -> ( sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
273 |
262 267 272
|
3eqtr3d |
|- ( ( ph /\ m e. NN ) -> 0 = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
274 |
|
fvconst2g |
|- ( ( 0 e. CC /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = 0 ) |
275 |
13 274
|
sylan |
|- ( ( ph /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = 0 ) |
276 |
155
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> M e. ZZ ) |
277 |
53
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> k e. ZZ ) |
278 |
153 154 276 277
|
expsubd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ ( k - M ) ) = ( ( m ^ k ) / ( m ^ M ) ) ) |
279 |
278
|
oveq2d |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ ( k - M ) ) ) = ( ( A ` k ) x. ( ( m ^ k ) / ( m ^ M ) ) ) ) |
280 |
264
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ M ) e. CC ) |
281 |
266
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ M ) =/= 0 ) |
282 |
152 270 280 281
|
divassd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) = ( ( A ` k ) x. ( ( m ^ k ) / ( m ^ M ) ) ) ) |
283 |
279 150 282
|
3eqtr4d |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
284 |
283
|
sumeq2dv |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... N ) ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
285 |
273 275 284
|
3eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = sum_ k e. ( 0 ... N ) ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) |
286 |
8 9 10 244 247 248 285
|
climfsum |
|- ( ph -> ( NN X. { 0 } ) ~~> sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) |
287 |
|
suprleub |
|- ( ( ( ( `' A " ( S \ { 0 } ) ) C_ RR /\ ( `' A " ( S \ { 0 } ) ) =/= (/) /\ E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) /\ N e. RR ) -> ( sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N <-> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) ) |
288 |
197 7 78 58 287
|
syl31anc |
|- ( ph -> ( sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N <-> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) ) |
289 |
76 288
|
mpbird |
|- ( ph -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N ) |
290 |
6 289
|
eqbrtrid |
|- ( ph -> M <_ N ) |
291 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
292 |
82 291
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
293 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
294 |
|
elfz5 |
|- ( ( M e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( M e. ( 0 ... N ) <-> M <_ N ) ) |
295 |
292 293 294
|
syl2anc |
|- ( ph -> ( M e. ( 0 ... N ) <-> M <_ N ) ) |
296 |
290 295
|
mpbird |
|- ( ph -> M e. ( 0 ... N ) ) |
297 |
296
|
snssd |
|- ( ph -> { M } C_ ( 0 ... N ) ) |
298 |
23 82
|
ffvelrnd |
|- ( ph -> ( A ` M ) e. CC ) |
299 |
|
elsni |
|- ( k e. { M } -> k = M ) |
300 |
299
|
fveq2d |
|- ( k e. { M } -> ( A ` k ) = ( A ` M ) ) |
301 |
300
|
eleq1d |
|- ( k e. { M } -> ( ( A ` k ) e. CC <-> ( A ` M ) e. CC ) ) |
302 |
298 301
|
syl5ibrcom |
|- ( ph -> ( k e. { M } -> ( A ` k ) e. CC ) ) |
303 |
302
|
ralrimiv |
|- ( ph -> A. k e. { M } ( A ` k ) e. CC ) |
304 |
10
|
olcd |
|- ( ph -> ( ( 0 ... N ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... N ) e. Fin ) ) |
305 |
|
sumss2 |
|- ( ( ( { M } C_ ( 0 ... N ) /\ A. k e. { M } ( A ` k ) e. CC ) /\ ( ( 0 ... N ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... N ) e. Fin ) ) -> sum_ k e. { M } ( A ` k ) = sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) |
306 |
297 303 304 305
|
syl21anc |
|- ( ph -> sum_ k e. { M } ( A ` k ) = sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) |
307 |
|
ltso |
|- < Or RR |
308 |
307
|
supex |
|- sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. _V |
309 |
6 308
|
eqeltri |
|- M e. _V |
310 |
|
fveq2 |
|- ( k = M -> ( A ` k ) = ( A ` M ) ) |
311 |
310
|
sumsn |
|- ( ( M e. _V /\ ( A ` M ) e. CC ) -> sum_ k e. { M } ( A ` k ) = ( A ` M ) ) |
312 |
309 298 311
|
sylancr |
|- ( ph -> sum_ k e. { M } ( A ` k ) = ( A ` M ) ) |
313 |
306 312
|
eqtr3d |
|- ( ph -> sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) = ( A ` M ) ) |
314 |
286 313
|
breqtrd |
|- ( ph -> ( NN X. { 0 } ) ~~> ( A ` M ) ) |
315 |
240 32
|
climconst2 |
|- ( ( 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ~~> 0 ) |
316 |
12 239 315
|
mp2an |
|- ( NN X. { 0 } ) ~~> 0 |
317 |
|
climuni |
|- ( ( ( NN X. { 0 } ) ~~> ( A ` M ) /\ ( NN X. { 0 } ) ~~> 0 ) -> ( A ` M ) = 0 ) |
318 |
314 316 317
|
sylancl |
|- ( ph -> ( A ` M ) = 0 ) |
319 |
|
fvex |
|- ( A ` M ) e. _V |
320 |
319
|
elsn |
|- ( ( A ` M ) e. { 0 } <-> ( A ` M ) = 0 ) |
321 |
318 320
|
sylibr |
|- ( ph -> ( A ` M ) e. { 0 } ) |
322 |
|
elpreima |
|- ( A Fn NN0 -> ( M e. ( `' A " ( S \ { 0 } ) ) <-> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) ) |
323 |
59 322
|
syl |
|- ( ph -> ( M e. ( `' A " ( S \ { 0 } ) ) <-> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) ) |
324 |
81 323
|
mpbid |
|- ( ph -> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) |
325 |
324
|
simprd |
|- ( ph -> ( A ` M ) e. ( S \ { 0 } ) ) |
326 |
325
|
eldifbd |
|- ( ph -> -. ( A ` M ) e. { 0 } ) |
327 |
321 326
|
pm2.65i |
|- -. ph |