Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> -. D e. Fin ) |
2 |
|
simpll |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> D C_ CC ) |
3 |
2
|
sseld |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( b e. D -> b e. CC ) ) |
4 |
|
simprll |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> p e. ( Poly ` CC ) ) |
5 |
|
plyf |
|- ( p e. ( Poly ` CC ) -> p : CC --> CC ) |
6 |
4 5
|
syl |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> p : CC --> CC ) |
7 |
6
|
ffnd |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> p Fn CC ) |
8 |
7
|
adantr |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> p Fn CC ) |
9 |
|
simprrl |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> a e. ( Poly ` CC ) ) |
10 |
|
plyf |
|- ( a e. ( Poly ` CC ) -> a : CC --> CC ) |
11 |
9 10
|
syl |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> a : CC --> CC ) |
12 |
11
|
ffnd |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> a Fn CC ) |
13 |
12
|
adantr |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> a Fn CC ) |
14 |
|
cnex |
|- CC e. _V |
15 |
14
|
a1i |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> CC e. _V ) |
16 |
2
|
sselda |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> b e. CC ) |
17 |
|
fnfvof |
|- ( ( ( p Fn CC /\ a Fn CC ) /\ ( CC e. _V /\ b e. CC ) ) -> ( ( p oF - a ) ` b ) = ( ( p ` b ) - ( a ` b ) ) ) |
18 |
8 13 15 16 17
|
syl22anc |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( ( p oF - a ) ` b ) = ( ( p ` b ) - ( a ` b ) ) ) |
19 |
6
|
adantr |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> p : CC --> CC ) |
20 |
19 16
|
ffvelrnd |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( p ` b ) e. CC ) |
21 |
|
simprlr |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( p |` D ) = F ) |
22 |
|
simprrr |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( a |` D ) = F ) |
23 |
21 22
|
eqtr4d |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( p |` D ) = ( a |` D ) ) |
24 |
23
|
adantr |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( p |` D ) = ( a |` D ) ) |
25 |
24
|
fveq1d |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( ( p |` D ) ` b ) = ( ( a |` D ) ` b ) ) |
26 |
|
fvres |
|- ( b e. D -> ( ( p |` D ) ` b ) = ( p ` b ) ) |
27 |
26
|
adantl |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( ( p |` D ) ` b ) = ( p ` b ) ) |
28 |
|
fvres |
|- ( b e. D -> ( ( a |` D ) ` b ) = ( a ` b ) ) |
29 |
28
|
adantl |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( ( a |` D ) ` b ) = ( a ` b ) ) |
30 |
25 27 29
|
3eqtr3d |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( p ` b ) = ( a ` b ) ) |
31 |
20 30
|
subeq0bd |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( ( p ` b ) - ( a ` b ) ) = 0 ) |
32 |
18 31
|
eqtrd |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ b e. D ) -> ( ( p oF - a ) ` b ) = 0 ) |
33 |
32
|
ex |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( b e. D -> ( ( p oF - a ) ` b ) = 0 ) ) |
34 |
3 33
|
jcad |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( b e. D -> ( b e. CC /\ ( ( p oF - a ) ` b ) = 0 ) ) ) |
35 |
|
plysubcl |
|- ( ( p e. ( Poly ` CC ) /\ a e. ( Poly ` CC ) ) -> ( p oF - a ) e. ( Poly ` CC ) ) |
36 |
4 9 35
|
syl2anc |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( p oF - a ) e. ( Poly ` CC ) ) |
37 |
|
plyf |
|- ( ( p oF - a ) e. ( Poly ` CC ) -> ( p oF - a ) : CC --> CC ) |
38 |
|
ffn |
|- ( ( p oF - a ) : CC --> CC -> ( p oF - a ) Fn CC ) |
39 |
|
fniniseg |
|- ( ( p oF - a ) Fn CC -> ( b e. ( `' ( p oF - a ) " { 0 } ) <-> ( b e. CC /\ ( ( p oF - a ) ` b ) = 0 ) ) ) |
40 |
36 37 38 39
|
4syl |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( b e. ( `' ( p oF - a ) " { 0 } ) <-> ( b e. CC /\ ( ( p oF - a ) ` b ) = 0 ) ) ) |
41 |
34 40
|
sylibrd |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( b e. D -> b e. ( `' ( p oF - a ) " { 0 } ) ) ) |
42 |
41
|
ssrdv |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> D C_ ( `' ( p oF - a ) " { 0 } ) ) |
43 |
|
ssfi |
|- ( ( ( `' ( p oF - a ) " { 0 } ) e. Fin /\ D C_ ( `' ( p oF - a ) " { 0 } ) ) -> D e. Fin ) |
44 |
43
|
expcom |
|- ( D C_ ( `' ( p oF - a ) " { 0 } ) -> ( ( `' ( p oF - a ) " { 0 } ) e. Fin -> D e. Fin ) ) |
45 |
42 44
|
syl |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( ( `' ( p oF - a ) " { 0 } ) e. Fin -> D e. Fin ) ) |
46 |
1 45
|
mtod |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> -. ( `' ( p oF - a ) " { 0 } ) e. Fin ) |
47 |
|
neqne |
|- ( -. ( p oF - a ) = 0p -> ( p oF - a ) =/= 0p ) |
48 |
|
eqid |
|- ( `' ( p oF - a ) " { 0 } ) = ( `' ( p oF - a ) " { 0 } ) |
49 |
48
|
fta1 |
|- ( ( ( p oF - a ) e. ( Poly ` CC ) /\ ( p oF - a ) =/= 0p ) -> ( ( `' ( p oF - a ) " { 0 } ) e. Fin /\ ( # ` ( `' ( p oF - a ) " { 0 } ) ) <_ ( deg ` ( p oF - a ) ) ) ) |
50 |
36 47 49
|
syl2an |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ -. ( p oF - a ) = 0p ) -> ( ( `' ( p oF - a ) " { 0 } ) e. Fin /\ ( # ` ( `' ( p oF - a ) " { 0 } ) ) <_ ( deg ` ( p oF - a ) ) ) ) |
51 |
50
|
simpld |
|- ( ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) /\ -. ( p oF - a ) = 0p ) -> ( `' ( p oF - a ) " { 0 } ) e. Fin ) |
52 |
51
|
ex |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( -. ( p oF - a ) = 0p -> ( `' ( p oF - a ) " { 0 } ) e. Fin ) ) |
53 |
46 52
|
mt3d |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( p oF - a ) = 0p ) |
54 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
55 |
53 54
|
eqtrdi |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( p oF - a ) = ( CC X. { 0 } ) ) |
56 |
|
ofsubeq0 |
|- ( ( CC e. _V /\ p : CC --> CC /\ a : CC --> CC ) -> ( ( p oF - a ) = ( CC X. { 0 } ) <-> p = a ) ) |
57 |
14 6 11 56
|
mp3an2i |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> ( ( p oF - a ) = ( CC X. { 0 } ) <-> p = a ) ) |
58 |
55 57
|
mpbid |
|- ( ( ( D C_ CC /\ -. D e. Fin ) /\ ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) -> p = a ) |
59 |
58
|
ex |
|- ( ( D C_ CC /\ -. D e. Fin ) -> ( ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) -> p = a ) ) |
60 |
59
|
alrimivv |
|- ( ( D C_ CC /\ -. D e. Fin ) -> A. p A. a ( ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) -> p = a ) ) |
61 |
|
eleq1w |
|- ( p = a -> ( p e. ( Poly ` CC ) <-> a e. ( Poly ` CC ) ) ) |
62 |
|
reseq1 |
|- ( p = a -> ( p |` D ) = ( a |` D ) ) |
63 |
62
|
eqeq1d |
|- ( p = a -> ( ( p |` D ) = F <-> ( a |` D ) = F ) ) |
64 |
61 63
|
anbi12d |
|- ( p = a -> ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) <-> ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) ) |
65 |
64
|
mo4 |
|- ( E* p ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) <-> A. p A. a ( ( ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) /\ ( a e. ( Poly ` CC ) /\ ( a |` D ) = F ) ) -> p = a ) ) |
66 |
60 65
|
sylibr |
|- ( ( D C_ CC /\ -. D e. Fin ) -> E* p ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) ) |
67 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
68 |
67
|
sseli |
|- ( p e. ( Poly ` S ) -> p e. ( Poly ` CC ) ) |
69 |
68
|
anim1i |
|- ( ( p e. ( Poly ` S ) /\ ( p |` D ) = F ) -> ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) ) |
70 |
69
|
moimi |
|- ( E* p ( p e. ( Poly ` CC ) /\ ( p |` D ) = F ) -> E* p ( p e. ( Poly ` S ) /\ ( p |` D ) = F ) ) |
71 |
66 70
|
syl |
|- ( ( D C_ CC /\ -. D e. Fin ) -> E* p ( p e. ( Poly ` S ) /\ ( p |` D ) = F ) ) |