| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptresid |  |-  ( _I |` CC ) = ( z e. CC |-> z ) | 
						
							| 2 |  | df-idp |  |-  Xp = ( _I |` CC ) | 
						
							| 3 |  | exp1 |  |-  ( z e. CC -> ( z ^ 1 ) = z ) | 
						
							| 4 | 3 | mpteq2ia |  |-  ( z e. CC |-> ( z ^ 1 ) ) = ( z e. CC |-> z ) | 
						
							| 5 | 1 2 4 | 3eqtr4i |  |-  Xp = ( z e. CC |-> ( z ^ 1 ) ) | 
						
							| 6 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 7 |  | plypow |  |-  ( ( S C_ CC /\ 1 e. S /\ 1 e. NN0 ) -> ( z e. CC |-> ( z ^ 1 ) ) e. ( Poly ` S ) ) | 
						
							| 8 | 6 7 | mp3an3 |  |-  ( ( S C_ CC /\ 1 e. S ) -> ( z e. CC |-> ( z ^ 1 ) ) e. ( Poly ` S ) ) | 
						
							| 9 | 5 8 | eqeltrid |  |-  ( ( S C_ CC /\ 1 e. S ) -> Xp e. ( Poly ` S ) ) |