Step |
Hyp |
Ref |
Expression |
1 |
|
mptresid |
|- ( _I |` CC ) = ( z e. CC |-> z ) |
2 |
|
df-idp |
|- Xp = ( _I |` CC ) |
3 |
|
exp1 |
|- ( z e. CC -> ( z ^ 1 ) = z ) |
4 |
3
|
mpteq2ia |
|- ( z e. CC |-> ( z ^ 1 ) ) = ( z e. CC |-> z ) |
5 |
1 2 4
|
3eqtr4i |
|- Xp = ( z e. CC |-> ( z ^ 1 ) ) |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
|
plypow |
|- ( ( S C_ CC /\ 1 e. S /\ 1 e. NN0 ) -> ( z e. CC |-> ( z ^ 1 ) ) e. ( Poly ` S ) ) |
8 |
6 7
|
mp3an3 |
|- ( ( S C_ CC /\ 1 e. S ) -> ( z e. CC |-> ( z ^ 1 ) ) e. ( Poly ` S ) ) |
9 |
5 8
|
eqeltrid |
|- ( ( S C_ CC /\ 1 e. S ) -> Xp e. ( Poly ` S ) ) |