| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( z e. CC -> z e. CC ) | 
						
							| 2 |  | simp3 |  |-  ( ( S C_ CC /\ 1 e. S /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 3 |  | expcl |  |-  ( ( z e. CC /\ N e. NN0 ) -> ( z ^ N ) e. CC ) | 
						
							| 4 | 1 2 3 | syl2anr |  |-  ( ( ( S C_ CC /\ 1 e. S /\ N e. NN0 ) /\ z e. CC ) -> ( z ^ N ) e. CC ) | 
						
							| 5 | 4 | mullidd |  |-  ( ( ( S C_ CC /\ 1 e. S /\ N e. NN0 ) /\ z e. CC ) -> ( 1 x. ( z ^ N ) ) = ( z ^ N ) ) | 
						
							| 6 | 5 | mpteq2dva |  |-  ( ( S C_ CC /\ 1 e. S /\ N e. NN0 ) -> ( z e. CC |-> ( 1 x. ( z ^ N ) ) ) = ( z e. CC |-> ( z ^ N ) ) ) | 
						
							| 7 |  | eqid |  |-  ( z e. CC |-> ( 1 x. ( z ^ N ) ) ) = ( z e. CC |-> ( 1 x. ( z ^ N ) ) ) | 
						
							| 8 | 7 | ply1term |  |-  ( ( S C_ CC /\ 1 e. S /\ N e. NN0 ) -> ( z e. CC |-> ( 1 x. ( z ^ N ) ) ) e. ( Poly ` S ) ) | 
						
							| 9 | 6 8 | eqeltrrd |  |-  ( ( S C_ CC /\ 1 e. S /\ N e. NN0 ) -> ( z e. CC |-> ( z ^ N ) ) e. ( Poly ` S ) ) |