Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( 0 ... ( deg ` F ) ) e. Fin ) |
2 |
|
0re |
|- 0 e. RR |
3 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
4 |
3
|
coef2 |
|- ( ( F e. ( Poly ` RR ) /\ 0 e. RR ) -> ( coeff ` F ) : NN0 --> RR ) |
5 |
2 4
|
mpan2 |
|- ( F e. ( Poly ` RR ) -> ( coeff ` F ) : NN0 --> RR ) |
6 |
5
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( coeff ` F ) : NN0 --> RR ) |
7 |
|
elfznn0 |
|- ( x e. ( 0 ... ( deg ` F ) ) -> x e. NN0 ) |
8 |
|
ffvelrn |
|- ( ( ( coeff ` F ) : NN0 --> RR /\ x e. NN0 ) -> ( ( coeff ` F ) ` x ) e. RR ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` x ) e. RR ) |
10 |
9
|
recnd |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` x ) e. CC ) |
11 |
|
simpr |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> A e. CC ) |
12 |
|
expcl |
|- ( ( A e. CC /\ x e. NN0 ) -> ( A ^ x ) e. CC ) |
13 |
11 7 12
|
syl2an |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( A ^ x ) e. CC ) |
14 |
10 13
|
mulcld |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) e. CC ) |
15 |
1 14
|
fsumcj |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) ) |
16 |
10 13
|
cjmuld |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = ( ( * ` ( ( coeff ` F ) ` x ) ) x. ( * ` ( A ^ x ) ) ) ) |
17 |
9
|
cjred |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( coeff ` F ) ` x ) ) = ( ( coeff ` F ) ` x ) ) |
18 |
|
cjexp |
|- ( ( A e. CC /\ x e. NN0 ) -> ( * ` ( A ^ x ) ) = ( ( * ` A ) ^ x ) ) |
19 |
11 7 18
|
syl2an |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( A ^ x ) ) = ( ( * ` A ) ^ x ) ) |
20 |
17 19
|
oveq12d |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( * ` ( ( coeff ` F ) ` x ) ) x. ( * ` ( A ^ x ) ) ) = ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) |
21 |
16 20
|
eqtrd |
|- ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) |
22 |
21
|
sumeq2dv |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> sum_ x e. ( 0 ... ( deg ` F ) ) ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) |
23 |
15 22
|
eqtrd |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) |
24 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
25 |
3 24
|
coeid2 |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( F ` A ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) |
26 |
25
|
fveq2d |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` ( F ` A ) ) = ( * ` sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) ) |
27 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
28 |
3 24
|
coeid2 |
|- ( ( F e. ( Poly ` RR ) /\ ( * ` A ) e. CC ) -> ( F ` ( * ` A ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) |
29 |
27 28
|
sylan2 |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( F ` ( * ` A ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) |
30 |
23 26 29
|
3eqtr4d |
|- ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` ( F ` A ) ) = ( F ` ( * ` A ) ) ) |