| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( 0 ... ( deg ` F ) ) e. Fin ) | 
						
							| 2 |  | 0re |  |-  0 e. RR | 
						
							| 3 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 4 | 3 | coef2 |  |-  ( ( F e. ( Poly ` RR ) /\ 0 e. RR ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 5 | 2 4 | mpan2 |  |-  ( F e. ( Poly ` RR ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 7 |  | elfznn0 |  |-  ( x e. ( 0 ... ( deg ` F ) ) -> x e. NN0 ) | 
						
							| 8 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> RR /\ x e. NN0 ) -> ( ( coeff ` F ) ` x ) e. RR ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` x ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` x ) e. CC ) | 
						
							| 11 |  | simpr |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> A e. CC ) | 
						
							| 12 |  | expcl |  |-  ( ( A e. CC /\ x e. NN0 ) -> ( A ^ x ) e. CC ) | 
						
							| 13 | 11 7 12 | syl2an |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( A ^ x ) e. CC ) | 
						
							| 14 | 10 13 | mulcld |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) e. CC ) | 
						
							| 15 | 1 14 | fsumcj |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) ) | 
						
							| 16 | 10 13 | cjmuld |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = ( ( * ` ( ( coeff ` F ) ` x ) ) x. ( * ` ( A ^ x ) ) ) ) | 
						
							| 17 | 9 | cjred |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( coeff ` F ) ` x ) ) = ( ( coeff ` F ) ` x ) ) | 
						
							| 18 |  | cjexp |  |-  ( ( A e. CC /\ x e. NN0 ) -> ( * ` ( A ^ x ) ) = ( ( * ` A ) ^ x ) ) | 
						
							| 19 | 11 7 18 | syl2an |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( A ^ x ) ) = ( ( * ` A ) ^ x ) ) | 
						
							| 20 | 17 19 | oveq12d |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( ( * ` ( ( coeff ` F ) ` x ) ) x. ( * ` ( A ^ x ) ) ) = ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) | 
						
							| 21 | 16 20 | eqtrd |  |-  ( ( ( F e. ( Poly ` RR ) /\ A e. CC ) /\ x e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) | 
						
							| 22 | 21 | sumeq2dv |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> sum_ x e. ( 0 ... ( deg ` F ) ) ( * ` ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) | 
						
							| 23 | 15 22 | eqtrd |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) | 
						
							| 24 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 25 | 3 24 | coeid2 |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( F ` A ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` ( F ` A ) ) = ( * ` sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( A ^ x ) ) ) ) | 
						
							| 27 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 28 | 3 24 | coeid2 |  |-  ( ( F e. ( Poly ` RR ) /\ ( * ` A ) e. CC ) -> ( F ` ( * ` A ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) | 
						
							| 29 | 27 28 | sylan2 |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( F ` ( * ` A ) ) = sum_ x e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` x ) x. ( ( * ` A ) ^ x ) ) ) | 
						
							| 30 | 23 26 29 | 3eqtr4d |  |-  ( ( F e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` ( F ` A ) ) = ( F ` ( * ` A ) ) ) |