Step |
Hyp |
Ref |
Expression |
1 |
|
plyrem.1 |
|- G = ( Xp oF - ( CC X. { A } ) ) |
2 |
|
plyrem.2 |
|- R = ( F oF - ( G oF x. ( F quot G ) ) ) |
3 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
4 |
|
simpl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> F e. ( Poly ` S ) ) |
5 |
3 4
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> F e. ( Poly ` CC ) ) |
6 |
1
|
plyremlem |
|- ( A e. CC -> ( G e. ( Poly ` CC ) /\ ( deg ` G ) = 1 /\ ( `' G " { 0 } ) = { A } ) ) |
7 |
6
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( G e. ( Poly ` CC ) /\ ( deg ` G ) = 1 /\ ( `' G " { 0 } ) = { A } ) ) |
8 |
7
|
simp1d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> G e. ( Poly ` CC ) ) |
9 |
7
|
simp2d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( deg ` G ) = 1 ) |
10 |
|
ax-1ne0 |
|- 1 =/= 0 |
11 |
10
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> 1 =/= 0 ) |
12 |
9 11
|
eqnetrd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( deg ` G ) =/= 0 ) |
13 |
|
fveq2 |
|- ( G = 0p -> ( deg ` G ) = ( deg ` 0p ) ) |
14 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
15 |
13 14
|
eqtrdi |
|- ( G = 0p -> ( deg ` G ) = 0 ) |
16 |
15
|
necon3i |
|- ( ( deg ` G ) =/= 0 -> G =/= 0p ) |
17 |
12 16
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> G =/= 0p ) |
18 |
2
|
quotdgr |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
19 |
5 8 17 18
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
20 |
|
0lt1 |
|- 0 < 1 |
21 |
20 9
|
breqtrrid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> 0 < ( deg ` G ) ) |
22 |
|
fveq2 |
|- ( R = 0p -> ( deg ` R ) = ( deg ` 0p ) ) |
23 |
22 14
|
eqtrdi |
|- ( R = 0p -> ( deg ` R ) = 0 ) |
24 |
23
|
breq1d |
|- ( R = 0p -> ( ( deg ` R ) < ( deg ` G ) <-> 0 < ( deg ` G ) ) ) |
25 |
21 24
|
syl5ibrcom |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( R = 0p -> ( deg ` R ) < ( deg ` G ) ) ) |
26 |
|
pm2.62 |
|- ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) -> ( ( R = 0p -> ( deg ` R ) < ( deg ` G ) ) -> ( deg ` R ) < ( deg ` G ) ) ) |
27 |
19 25 26
|
sylc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( deg ` R ) < ( deg ` G ) ) |
28 |
27 9
|
breqtrd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( deg ` R ) < 1 ) |
29 |
|
quotcl2 |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( F quot G ) e. ( Poly ` CC ) ) |
30 |
5 8 17 29
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F quot G ) e. ( Poly ` CC ) ) |
31 |
|
plymulcl |
|- ( ( G e. ( Poly ` CC ) /\ ( F quot G ) e. ( Poly ` CC ) ) -> ( G oF x. ( F quot G ) ) e. ( Poly ` CC ) ) |
32 |
8 30 31
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( G oF x. ( F quot G ) ) e. ( Poly ` CC ) ) |
33 |
|
plysubcl |
|- ( ( F e. ( Poly ` CC ) /\ ( G oF x. ( F quot G ) ) e. ( Poly ` CC ) ) -> ( F oF - ( G oF x. ( F quot G ) ) ) e. ( Poly ` CC ) ) |
34 |
5 32 33
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F oF - ( G oF x. ( F quot G ) ) ) e. ( Poly ` CC ) ) |
35 |
2 34
|
eqeltrid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> R e. ( Poly ` CC ) ) |
36 |
|
dgrcl |
|- ( R e. ( Poly ` CC ) -> ( deg ` R ) e. NN0 ) |
37 |
35 36
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( deg ` R ) e. NN0 ) |
38 |
|
nn0lt10b |
|- ( ( deg ` R ) e. NN0 -> ( ( deg ` R ) < 1 <-> ( deg ` R ) = 0 ) ) |
39 |
37 38
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( ( deg ` R ) < 1 <-> ( deg ` R ) = 0 ) ) |
40 |
28 39
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( deg ` R ) = 0 ) |
41 |
|
0dgrb |
|- ( R e. ( Poly ` CC ) -> ( ( deg ` R ) = 0 <-> R = ( CC X. { ( R ` 0 ) } ) ) ) |
42 |
35 41
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( ( deg ` R ) = 0 <-> R = ( CC X. { ( R ` 0 ) } ) ) ) |
43 |
40 42
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> R = ( CC X. { ( R ` 0 ) } ) ) |
44 |
43
|
fveq1d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( R ` A ) = ( ( CC X. { ( R ` 0 ) } ) ` A ) ) |
45 |
2
|
fveq1i |
|- ( R ` A ) = ( ( F oF - ( G oF x. ( F quot G ) ) ) ` A ) |
46 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
47 |
46
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> F : CC --> CC ) |
48 |
47
|
ffnd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> F Fn CC ) |
49 |
|
plyf |
|- ( G e. ( Poly ` CC ) -> G : CC --> CC ) |
50 |
8 49
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> G : CC --> CC ) |
51 |
50
|
ffnd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> G Fn CC ) |
52 |
|
plyf |
|- ( ( F quot G ) e. ( Poly ` CC ) -> ( F quot G ) : CC --> CC ) |
53 |
30 52
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F quot G ) : CC --> CC ) |
54 |
53
|
ffnd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F quot G ) Fn CC ) |
55 |
|
cnex |
|- CC e. _V |
56 |
55
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> CC e. _V ) |
57 |
|
inidm |
|- ( CC i^i CC ) = CC |
58 |
51 54 56 56 57
|
offn |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( G oF x. ( F quot G ) ) Fn CC ) |
59 |
|
eqidd |
|- ( ( ( F e. ( Poly ` S ) /\ A e. CC ) /\ A e. CC ) -> ( F ` A ) = ( F ` A ) ) |
60 |
7
|
simp3d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( `' G " { 0 } ) = { A } ) |
61 |
|
ssun1 |
|- ( `' G " { 0 } ) C_ ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) |
62 |
60 61
|
eqsstrrdi |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> { A } C_ ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) ) |
63 |
|
snssg |
|- ( A e. CC -> ( A e. ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) <-> { A } C_ ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) ) ) |
64 |
63
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( A e. ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) <-> { A } C_ ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) ) ) |
65 |
62 64
|
mpbird |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> A e. ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) ) |
66 |
|
ofmulrt |
|- ( ( CC e. _V /\ G : CC --> CC /\ ( F quot G ) : CC --> CC ) -> ( `' ( G oF x. ( F quot G ) ) " { 0 } ) = ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) ) |
67 |
56 50 53 66
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( `' ( G oF x. ( F quot G ) ) " { 0 } ) = ( ( `' G " { 0 } ) u. ( `' ( F quot G ) " { 0 } ) ) ) |
68 |
65 67
|
eleqtrrd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> A e. ( `' ( G oF x. ( F quot G ) ) " { 0 } ) ) |
69 |
|
fniniseg |
|- ( ( G oF x. ( F quot G ) ) Fn CC -> ( A e. ( `' ( G oF x. ( F quot G ) ) " { 0 } ) <-> ( A e. CC /\ ( ( G oF x. ( F quot G ) ) ` A ) = 0 ) ) ) |
70 |
58 69
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( A e. ( `' ( G oF x. ( F quot G ) ) " { 0 } ) <-> ( A e. CC /\ ( ( G oF x. ( F quot G ) ) ` A ) = 0 ) ) ) |
71 |
68 70
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( A e. CC /\ ( ( G oF x. ( F quot G ) ) ` A ) = 0 ) ) |
72 |
71
|
simprd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( ( G oF x. ( F quot G ) ) ` A ) = 0 ) |
73 |
72
|
adantr |
|- ( ( ( F e. ( Poly ` S ) /\ A e. CC ) /\ A e. CC ) -> ( ( G oF x. ( F quot G ) ) ` A ) = 0 ) |
74 |
48 58 56 56 57 59 73
|
ofval |
|- ( ( ( F e. ( Poly ` S ) /\ A e. CC ) /\ A e. CC ) -> ( ( F oF - ( G oF x. ( F quot G ) ) ) ` A ) = ( ( F ` A ) - 0 ) ) |
75 |
74
|
anabss3 |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( ( F oF - ( G oF x. ( F quot G ) ) ) ` A ) = ( ( F ` A ) - 0 ) ) |
76 |
45 75
|
syl5eq |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( R ` A ) = ( ( F ` A ) - 0 ) ) |
77 |
46
|
ffvelrnda |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F ` A ) e. CC ) |
78 |
77
|
subid1d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( ( F ` A ) - 0 ) = ( F ` A ) ) |
79 |
76 78
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( R ` A ) = ( F ` A ) ) |
80 |
|
fvex |
|- ( R ` 0 ) e. _V |
81 |
80
|
fvconst2 |
|- ( A e. CC -> ( ( CC X. { ( R ` 0 ) } ) ` A ) = ( R ` 0 ) ) |
82 |
81
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( ( CC X. { ( R ` 0 ) } ) ` A ) = ( R ` 0 ) ) |
83 |
44 79 82
|
3eqtr3d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F ` A ) = ( R ` 0 ) ) |
84 |
83
|
sneqd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> { ( F ` A ) } = { ( R ` 0 ) } ) |
85 |
84
|
xpeq2d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( CC X. { ( F ` A ) } ) = ( CC X. { ( R ` 0 ) } ) ) |
86 |
43 85
|
eqtr4d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> R = ( CC X. { ( F ` A ) } ) ) |