| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyrem.1 |  |-  G = ( Xp oF - ( CC X. { A } ) ) | 
						
							| 2 |  | ssid |  |-  CC C_ CC | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | plyid |  |-  ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) | 
						
							| 5 | 2 3 4 | mp2an |  |-  Xp e. ( Poly ` CC ) | 
						
							| 6 |  | plyconst |  |-  ( ( CC C_ CC /\ A e. CC ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) | 
						
							| 7 | 2 6 | mpan |  |-  ( A e. CC -> ( CC X. { A } ) e. ( Poly ` CC ) ) | 
						
							| 8 |  | plysubcl |  |-  ( ( Xp e. ( Poly ` CC ) /\ ( CC X. { A } ) e. ( Poly ` CC ) ) -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( A e. CC -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) | 
						
							| 10 | 1 9 | eqeltrid |  |-  ( A e. CC -> G e. ( Poly ` CC ) ) | 
						
							| 11 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 12 |  | addcom |  |-  ( ( -u A e. CC /\ z e. CC ) -> ( -u A + z ) = ( z + -u A ) ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( A e. CC /\ z e. CC ) -> ( -u A + z ) = ( z + -u A ) ) | 
						
							| 14 |  | negsub |  |-  ( ( z e. CC /\ A e. CC ) -> ( z + -u A ) = ( z - A ) ) | 
						
							| 15 | 14 | ancoms |  |-  ( ( A e. CC /\ z e. CC ) -> ( z + -u A ) = ( z - A ) ) | 
						
							| 16 | 13 15 | eqtrd |  |-  ( ( A e. CC /\ z e. CC ) -> ( -u A + z ) = ( z - A ) ) | 
						
							| 17 | 16 | mpteq2dva |  |-  ( A e. CC -> ( z e. CC |-> ( -u A + z ) ) = ( z e. CC |-> ( z - A ) ) ) | 
						
							| 18 |  | cnex |  |-  CC e. _V | 
						
							| 19 | 18 | a1i |  |-  ( A e. CC -> CC e. _V ) | 
						
							| 20 |  | negex |  |-  -u A e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ( A e. CC /\ z e. CC ) -> -u A e. _V ) | 
						
							| 22 |  | simpr |  |-  ( ( A e. CC /\ z e. CC ) -> z e. CC ) | 
						
							| 23 |  | fconstmpt |  |-  ( CC X. { -u A } ) = ( z e. CC |-> -u A ) | 
						
							| 24 | 23 | a1i |  |-  ( A e. CC -> ( CC X. { -u A } ) = ( z e. CC |-> -u A ) ) | 
						
							| 25 |  | df-idp |  |-  Xp = ( _I |` CC ) | 
						
							| 26 |  | mptresid |  |-  ( _I |` CC ) = ( z e. CC |-> z ) | 
						
							| 27 | 25 26 | eqtri |  |-  Xp = ( z e. CC |-> z ) | 
						
							| 28 | 27 | a1i |  |-  ( A e. CC -> Xp = ( z e. CC |-> z ) ) | 
						
							| 29 | 19 21 22 24 28 | offval2 |  |-  ( A e. CC -> ( ( CC X. { -u A } ) oF + Xp ) = ( z e. CC |-> ( -u A + z ) ) ) | 
						
							| 30 |  | simpl |  |-  ( ( A e. CC /\ z e. CC ) -> A e. CC ) | 
						
							| 31 |  | fconstmpt |  |-  ( CC X. { A } ) = ( z e. CC |-> A ) | 
						
							| 32 | 31 | a1i |  |-  ( A e. CC -> ( CC X. { A } ) = ( z e. CC |-> A ) ) | 
						
							| 33 | 19 22 30 28 32 | offval2 |  |-  ( A e. CC -> ( Xp oF - ( CC X. { A } ) ) = ( z e. CC |-> ( z - A ) ) ) | 
						
							| 34 | 17 29 33 | 3eqtr4d |  |-  ( A e. CC -> ( ( CC X. { -u A } ) oF + Xp ) = ( Xp oF - ( CC X. { A } ) ) ) | 
						
							| 35 | 34 1 | eqtr4di |  |-  ( A e. CC -> ( ( CC X. { -u A } ) oF + Xp ) = G ) | 
						
							| 36 | 35 | fveq2d |  |-  ( A e. CC -> ( deg ` ( ( CC X. { -u A } ) oF + Xp ) ) = ( deg ` G ) ) | 
						
							| 37 |  | plyconst |  |-  ( ( CC C_ CC /\ -u A e. CC ) -> ( CC X. { -u A } ) e. ( Poly ` CC ) ) | 
						
							| 38 | 2 11 37 | sylancr |  |-  ( A e. CC -> ( CC X. { -u A } ) e. ( Poly ` CC ) ) | 
						
							| 39 | 5 | a1i |  |-  ( A e. CC -> Xp e. ( Poly ` CC ) ) | 
						
							| 40 |  | 0dgr |  |-  ( -u A e. CC -> ( deg ` ( CC X. { -u A } ) ) = 0 ) | 
						
							| 41 | 11 40 | syl |  |-  ( A e. CC -> ( deg ` ( CC X. { -u A } ) ) = 0 ) | 
						
							| 42 |  | 0lt1 |  |-  0 < 1 | 
						
							| 43 | 41 42 | eqbrtrdi |  |-  ( A e. CC -> ( deg ` ( CC X. { -u A } ) ) < 1 ) | 
						
							| 44 |  | eqid |  |-  ( deg ` ( CC X. { -u A } ) ) = ( deg ` ( CC X. { -u A } ) ) | 
						
							| 45 |  | dgrid |  |-  ( deg ` Xp ) = 1 | 
						
							| 46 | 45 | eqcomi |  |-  1 = ( deg ` Xp ) | 
						
							| 47 | 44 46 | dgradd2 |  |-  ( ( ( CC X. { -u A } ) e. ( Poly ` CC ) /\ Xp e. ( Poly ` CC ) /\ ( deg ` ( CC X. { -u A } ) ) < 1 ) -> ( deg ` ( ( CC X. { -u A } ) oF + Xp ) ) = 1 ) | 
						
							| 48 | 38 39 43 47 | syl3anc |  |-  ( A e. CC -> ( deg ` ( ( CC X. { -u A } ) oF + Xp ) ) = 1 ) | 
						
							| 49 | 36 48 | eqtr3d |  |-  ( A e. CC -> ( deg ` G ) = 1 ) | 
						
							| 50 | 1 33 | eqtrid |  |-  ( A e. CC -> G = ( z e. CC |-> ( z - A ) ) ) | 
						
							| 51 | 50 | fveq1d |  |-  ( A e. CC -> ( G ` z ) = ( ( z e. CC |-> ( z - A ) ) ` z ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( A e. CC /\ z e. CC ) -> ( G ` z ) = ( ( z e. CC |-> ( z - A ) ) ` z ) ) | 
						
							| 53 |  | ovex |  |-  ( z - A ) e. _V | 
						
							| 54 |  | eqid |  |-  ( z e. CC |-> ( z - A ) ) = ( z e. CC |-> ( z - A ) ) | 
						
							| 55 | 54 | fvmpt2 |  |-  ( ( z e. CC /\ ( z - A ) e. _V ) -> ( ( z e. CC |-> ( z - A ) ) ` z ) = ( z - A ) ) | 
						
							| 56 | 22 53 55 | sylancl |  |-  ( ( A e. CC /\ z e. CC ) -> ( ( z e. CC |-> ( z - A ) ) ` z ) = ( z - A ) ) | 
						
							| 57 | 52 56 | eqtrd |  |-  ( ( A e. CC /\ z e. CC ) -> ( G ` z ) = ( z - A ) ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( ( A e. CC /\ z e. CC ) -> ( ( G ` z ) = 0 <-> ( z - A ) = 0 ) ) | 
						
							| 59 |  | subeq0 |  |-  ( ( z e. CC /\ A e. CC ) -> ( ( z - A ) = 0 <-> z = A ) ) | 
						
							| 60 | 59 | ancoms |  |-  ( ( A e. CC /\ z e. CC ) -> ( ( z - A ) = 0 <-> z = A ) ) | 
						
							| 61 | 58 60 | bitrd |  |-  ( ( A e. CC /\ z e. CC ) -> ( ( G ` z ) = 0 <-> z = A ) ) | 
						
							| 62 | 61 | pm5.32da |  |-  ( A e. CC -> ( ( z e. CC /\ ( G ` z ) = 0 ) <-> ( z e. CC /\ z = A ) ) ) | 
						
							| 63 |  | plyf |  |-  ( G e. ( Poly ` CC ) -> G : CC --> CC ) | 
						
							| 64 |  | ffn |  |-  ( G : CC --> CC -> G Fn CC ) | 
						
							| 65 |  | fniniseg |  |-  ( G Fn CC -> ( z e. ( `' G " { 0 } ) <-> ( z e. CC /\ ( G ` z ) = 0 ) ) ) | 
						
							| 66 | 10 63 64 65 | 4syl |  |-  ( A e. CC -> ( z e. ( `' G " { 0 } ) <-> ( z e. CC /\ ( G ` z ) = 0 ) ) ) | 
						
							| 67 |  | eleq1a |  |-  ( A e. CC -> ( z = A -> z e. CC ) ) | 
						
							| 68 | 67 | pm4.71rd |  |-  ( A e. CC -> ( z = A <-> ( z e. CC /\ z = A ) ) ) | 
						
							| 69 | 62 66 68 | 3bitr4d |  |-  ( A e. CC -> ( z e. ( `' G " { 0 } ) <-> z = A ) ) | 
						
							| 70 |  | velsn |  |-  ( z e. { A } <-> z = A ) | 
						
							| 71 | 69 70 | bitr4di |  |-  ( A e. CC -> ( z e. ( `' G " { 0 } ) <-> z e. { A } ) ) | 
						
							| 72 | 71 | eqrdv |  |-  ( A e. CC -> ( `' G " { 0 } ) = { A } ) | 
						
							| 73 | 10 49 72 | 3jca |  |-  ( A e. CC -> ( G e. ( Poly ` CC ) /\ ( deg ` G ) = 1 /\ ( `' G " { 0 } ) = { A } ) ) |