Step |
Hyp |
Ref |
Expression |
1 |
|
plyrem.1 |
|- G = ( Xp oF - ( CC X. { A } ) ) |
2 |
|
ssid |
|- CC C_ CC |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
|
plyid |
|- ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) |
5 |
2 3 4
|
mp2an |
|- Xp e. ( Poly ` CC ) |
6 |
|
plyconst |
|- ( ( CC C_ CC /\ A e. CC ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
7 |
2 6
|
mpan |
|- ( A e. CC -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
8 |
|
plysubcl |
|- ( ( Xp e. ( Poly ` CC ) /\ ( CC X. { A } ) e. ( Poly ` CC ) ) -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) |
9 |
5 7 8
|
sylancr |
|- ( A e. CC -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` CC ) ) |
10 |
1 9
|
eqeltrid |
|- ( A e. CC -> G e. ( Poly ` CC ) ) |
11 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
12 |
|
addcom |
|- ( ( -u A e. CC /\ z e. CC ) -> ( -u A + z ) = ( z + -u A ) ) |
13 |
11 12
|
sylan |
|- ( ( A e. CC /\ z e. CC ) -> ( -u A + z ) = ( z + -u A ) ) |
14 |
|
negsub |
|- ( ( z e. CC /\ A e. CC ) -> ( z + -u A ) = ( z - A ) ) |
15 |
14
|
ancoms |
|- ( ( A e. CC /\ z e. CC ) -> ( z + -u A ) = ( z - A ) ) |
16 |
13 15
|
eqtrd |
|- ( ( A e. CC /\ z e. CC ) -> ( -u A + z ) = ( z - A ) ) |
17 |
16
|
mpteq2dva |
|- ( A e. CC -> ( z e. CC |-> ( -u A + z ) ) = ( z e. CC |-> ( z - A ) ) ) |
18 |
|
cnex |
|- CC e. _V |
19 |
18
|
a1i |
|- ( A e. CC -> CC e. _V ) |
20 |
|
negex |
|- -u A e. _V |
21 |
20
|
a1i |
|- ( ( A e. CC /\ z e. CC ) -> -u A e. _V ) |
22 |
|
simpr |
|- ( ( A e. CC /\ z e. CC ) -> z e. CC ) |
23 |
|
fconstmpt |
|- ( CC X. { -u A } ) = ( z e. CC |-> -u A ) |
24 |
23
|
a1i |
|- ( A e. CC -> ( CC X. { -u A } ) = ( z e. CC |-> -u A ) ) |
25 |
|
df-idp |
|- Xp = ( _I |` CC ) |
26 |
|
mptresid |
|- ( _I |` CC ) = ( z e. CC |-> z ) |
27 |
25 26
|
eqtri |
|- Xp = ( z e. CC |-> z ) |
28 |
27
|
a1i |
|- ( A e. CC -> Xp = ( z e. CC |-> z ) ) |
29 |
19 21 22 24 28
|
offval2 |
|- ( A e. CC -> ( ( CC X. { -u A } ) oF + Xp ) = ( z e. CC |-> ( -u A + z ) ) ) |
30 |
|
simpl |
|- ( ( A e. CC /\ z e. CC ) -> A e. CC ) |
31 |
|
fconstmpt |
|- ( CC X. { A } ) = ( z e. CC |-> A ) |
32 |
31
|
a1i |
|- ( A e. CC -> ( CC X. { A } ) = ( z e. CC |-> A ) ) |
33 |
19 22 30 28 32
|
offval2 |
|- ( A e. CC -> ( Xp oF - ( CC X. { A } ) ) = ( z e. CC |-> ( z - A ) ) ) |
34 |
17 29 33
|
3eqtr4d |
|- ( A e. CC -> ( ( CC X. { -u A } ) oF + Xp ) = ( Xp oF - ( CC X. { A } ) ) ) |
35 |
34 1
|
eqtr4di |
|- ( A e. CC -> ( ( CC X. { -u A } ) oF + Xp ) = G ) |
36 |
35
|
fveq2d |
|- ( A e. CC -> ( deg ` ( ( CC X. { -u A } ) oF + Xp ) ) = ( deg ` G ) ) |
37 |
|
plyconst |
|- ( ( CC C_ CC /\ -u A e. CC ) -> ( CC X. { -u A } ) e. ( Poly ` CC ) ) |
38 |
2 11 37
|
sylancr |
|- ( A e. CC -> ( CC X. { -u A } ) e. ( Poly ` CC ) ) |
39 |
5
|
a1i |
|- ( A e. CC -> Xp e. ( Poly ` CC ) ) |
40 |
|
0dgr |
|- ( -u A e. CC -> ( deg ` ( CC X. { -u A } ) ) = 0 ) |
41 |
11 40
|
syl |
|- ( A e. CC -> ( deg ` ( CC X. { -u A } ) ) = 0 ) |
42 |
|
0lt1 |
|- 0 < 1 |
43 |
41 42
|
eqbrtrdi |
|- ( A e. CC -> ( deg ` ( CC X. { -u A } ) ) < 1 ) |
44 |
|
eqid |
|- ( deg ` ( CC X. { -u A } ) ) = ( deg ` ( CC X. { -u A } ) ) |
45 |
|
dgrid |
|- ( deg ` Xp ) = 1 |
46 |
45
|
eqcomi |
|- 1 = ( deg ` Xp ) |
47 |
44 46
|
dgradd2 |
|- ( ( ( CC X. { -u A } ) e. ( Poly ` CC ) /\ Xp e. ( Poly ` CC ) /\ ( deg ` ( CC X. { -u A } ) ) < 1 ) -> ( deg ` ( ( CC X. { -u A } ) oF + Xp ) ) = 1 ) |
48 |
38 39 43 47
|
syl3anc |
|- ( A e. CC -> ( deg ` ( ( CC X. { -u A } ) oF + Xp ) ) = 1 ) |
49 |
36 48
|
eqtr3d |
|- ( A e. CC -> ( deg ` G ) = 1 ) |
50 |
1 33
|
syl5eq |
|- ( A e. CC -> G = ( z e. CC |-> ( z - A ) ) ) |
51 |
50
|
fveq1d |
|- ( A e. CC -> ( G ` z ) = ( ( z e. CC |-> ( z - A ) ) ` z ) ) |
52 |
51
|
adantr |
|- ( ( A e. CC /\ z e. CC ) -> ( G ` z ) = ( ( z e. CC |-> ( z - A ) ) ` z ) ) |
53 |
|
ovex |
|- ( z - A ) e. _V |
54 |
|
eqid |
|- ( z e. CC |-> ( z - A ) ) = ( z e. CC |-> ( z - A ) ) |
55 |
54
|
fvmpt2 |
|- ( ( z e. CC /\ ( z - A ) e. _V ) -> ( ( z e. CC |-> ( z - A ) ) ` z ) = ( z - A ) ) |
56 |
22 53 55
|
sylancl |
|- ( ( A e. CC /\ z e. CC ) -> ( ( z e. CC |-> ( z - A ) ) ` z ) = ( z - A ) ) |
57 |
52 56
|
eqtrd |
|- ( ( A e. CC /\ z e. CC ) -> ( G ` z ) = ( z - A ) ) |
58 |
57
|
eqeq1d |
|- ( ( A e. CC /\ z e. CC ) -> ( ( G ` z ) = 0 <-> ( z - A ) = 0 ) ) |
59 |
|
subeq0 |
|- ( ( z e. CC /\ A e. CC ) -> ( ( z - A ) = 0 <-> z = A ) ) |
60 |
59
|
ancoms |
|- ( ( A e. CC /\ z e. CC ) -> ( ( z - A ) = 0 <-> z = A ) ) |
61 |
58 60
|
bitrd |
|- ( ( A e. CC /\ z e. CC ) -> ( ( G ` z ) = 0 <-> z = A ) ) |
62 |
61
|
pm5.32da |
|- ( A e. CC -> ( ( z e. CC /\ ( G ` z ) = 0 ) <-> ( z e. CC /\ z = A ) ) ) |
63 |
|
plyf |
|- ( G e. ( Poly ` CC ) -> G : CC --> CC ) |
64 |
|
ffn |
|- ( G : CC --> CC -> G Fn CC ) |
65 |
|
fniniseg |
|- ( G Fn CC -> ( z e. ( `' G " { 0 } ) <-> ( z e. CC /\ ( G ` z ) = 0 ) ) ) |
66 |
10 63 64 65
|
4syl |
|- ( A e. CC -> ( z e. ( `' G " { 0 } ) <-> ( z e. CC /\ ( G ` z ) = 0 ) ) ) |
67 |
|
eleq1a |
|- ( A e. CC -> ( z = A -> z e. CC ) ) |
68 |
67
|
pm4.71rd |
|- ( A e. CC -> ( z = A <-> ( z e. CC /\ z = A ) ) ) |
69 |
62 66 68
|
3bitr4d |
|- ( A e. CC -> ( z e. ( `' G " { 0 } ) <-> z = A ) ) |
70 |
|
velsn |
|- ( z e. { A } <-> z = A ) |
71 |
69 70
|
bitr4di |
|- ( A e. CC -> ( z e. ( `' G " { 0 } ) <-> z e. { A } ) ) |
72 |
71
|
eqrdv |
|- ( A e. CC -> ( `' G " { 0 } ) = { A } ) |
73 |
10 49 72
|
3jca |
|- ( A e. CC -> ( G e. ( Poly ` CC ) /\ ( deg ` G ) = 1 /\ ( `' G " { 0 } ) = { A } ) ) |