| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plybss |  |-  ( F e. ( Poly ` RR ) -> RR C_ CC ) | 
						
							| 2 |  | plyf |  |-  ( F e. ( Poly ` RR ) -> F : CC --> CC ) | 
						
							| 3 |  | ffn |  |-  ( F : CC --> CC -> F Fn CC ) | 
						
							| 4 |  | fnssresb |  |-  ( F Fn CC -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( F e. ( Poly ` RR ) -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) ) | 
						
							| 6 | 1 5 | mpbird |  |-  ( F e. ( Poly ` RR ) -> ( F |` RR ) Fn RR ) | 
						
							| 7 |  | fvres |  |-  ( a e. RR -> ( ( F |` RR ) ` a ) = ( F ` a ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) = ( F ` a ) ) | 
						
							| 9 |  | recn |  |-  ( a e. RR -> a e. CC ) | 
						
							| 10 |  | ffvelcdm |  |-  ( ( F : CC --> CC /\ a e. CC ) -> ( F ` a ) e. CC ) | 
						
							| 11 | 2 9 10 | syl2an |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. CC ) | 
						
							| 12 |  | plyrecj |  |-  ( ( F e. ( Poly ` RR ) /\ a e. CC ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) ) | 
						
							| 13 | 9 12 | sylan2 |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) ) | 
						
							| 14 |  | cjre |  |-  ( a e. RR -> ( * ` a ) = a ) | 
						
							| 15 | 14 | adantl |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` a ) = a ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` ( * ` a ) ) = ( F ` a ) ) | 
						
							| 17 | 13 16 | eqtrd |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` a ) ) | 
						
							| 18 | 11 17 | cjrebd |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. RR ) | 
						
							| 19 | 8 18 | eqeltrd |  |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) e. RR ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( F e. ( Poly ` RR ) -> A. a e. RR ( ( F |` RR ) ` a ) e. RR ) | 
						
							| 21 |  | fnfvrnss |  |-  ( ( ( F |` RR ) Fn RR /\ A. a e. RR ( ( F |` RR ) ` a ) e. RR ) -> ran ( F |` RR ) C_ RR ) | 
						
							| 22 | 6 20 21 | syl2anc |  |-  ( F e. ( Poly ` RR ) -> ran ( F |` RR ) C_ RR ) | 
						
							| 23 |  | df-f |  |-  ( ( F |` RR ) : RR --> RR <-> ( ( F |` RR ) Fn RR /\ ran ( F |` RR ) C_ RR ) ) | 
						
							| 24 | 6 22 23 | sylanbrc |  |-  ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) |