Step |
Hyp |
Ref |
Expression |
1 |
|
plybss |
|- ( F e. ( Poly ` RR ) -> RR C_ CC ) |
2 |
|
plyf |
|- ( F e. ( Poly ` RR ) -> F : CC --> CC ) |
3 |
|
ffn |
|- ( F : CC --> CC -> F Fn CC ) |
4 |
|
fnssresb |
|- ( F Fn CC -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) ) |
5 |
2 3 4
|
3syl |
|- ( F e. ( Poly ` RR ) -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) ) |
6 |
1 5
|
mpbird |
|- ( F e. ( Poly ` RR ) -> ( F |` RR ) Fn RR ) |
7 |
|
fvres |
|- ( a e. RR -> ( ( F |` RR ) ` a ) = ( F ` a ) ) |
8 |
7
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) = ( F ` a ) ) |
9 |
|
recn |
|- ( a e. RR -> a e. CC ) |
10 |
|
ffvelrn |
|- ( ( F : CC --> CC /\ a e. CC ) -> ( F ` a ) e. CC ) |
11 |
2 9 10
|
syl2an |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. CC ) |
12 |
|
plyrecj |
|- ( ( F e. ( Poly ` RR ) /\ a e. CC ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) ) |
13 |
9 12
|
sylan2 |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) ) |
14 |
|
cjre |
|- ( a e. RR -> ( * ` a ) = a ) |
15 |
14
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` a ) = a ) |
16 |
15
|
fveq2d |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` ( * ` a ) ) = ( F ` a ) ) |
17 |
13 16
|
eqtrd |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` a ) ) |
18 |
11 17
|
cjrebd |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. RR ) |
19 |
8 18
|
eqeltrd |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) e. RR ) |
20 |
19
|
ralrimiva |
|- ( F e. ( Poly ` RR ) -> A. a e. RR ( ( F |` RR ) ` a ) e. RR ) |
21 |
|
fnfvrnss |
|- ( ( ( F |` RR ) Fn RR /\ A. a e. RR ( ( F |` RR ) ` a ) e. RR ) -> ran ( F |` RR ) C_ RR ) |
22 |
6 20 21
|
syl2anc |
|- ( F e. ( Poly ` RR ) -> ran ( F |` RR ) C_ RR ) |
23 |
|
df-f |
|- ( ( F |` RR ) : RR --> RR <-> ( ( F |` RR ) Fn RR /\ ran ( F |` RR ) C_ RR ) ) |
24 |
6 22 23
|
sylanbrc |
|- ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) |