Metamath Proof Explorer


Theorem plyreres

Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion plyreres
|- ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR )

Proof

Step Hyp Ref Expression
1 plybss
 |-  ( F e. ( Poly ` RR ) -> RR C_ CC )
2 plyf
 |-  ( F e. ( Poly ` RR ) -> F : CC --> CC )
3 ffn
 |-  ( F : CC --> CC -> F Fn CC )
4 fnssresb
 |-  ( F Fn CC -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) )
5 2 3 4 3syl
 |-  ( F e. ( Poly ` RR ) -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) )
6 1 5 mpbird
 |-  ( F e. ( Poly ` RR ) -> ( F |` RR ) Fn RR )
7 fvres
 |-  ( a e. RR -> ( ( F |` RR ) ` a ) = ( F ` a ) )
8 7 adantl
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) = ( F ` a ) )
9 recn
 |-  ( a e. RR -> a e. CC )
10 ffvelrn
 |-  ( ( F : CC --> CC /\ a e. CC ) -> ( F ` a ) e. CC )
11 2 9 10 syl2an
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. CC )
12 plyrecj
 |-  ( ( F e. ( Poly ` RR ) /\ a e. CC ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) )
13 9 12 sylan2
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) )
14 cjre
 |-  ( a e. RR -> ( * ` a ) = a )
15 14 adantl
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` a ) = a )
16 15 fveq2d
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` ( * ` a ) ) = ( F ` a ) )
17 13 16 eqtrd
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` a ) )
18 11 17 cjrebd
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. RR )
19 8 18 eqeltrd
 |-  ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) e. RR )
20 19 ralrimiva
 |-  ( F e. ( Poly ` RR ) -> A. a e. RR ( ( F |` RR ) ` a ) e. RR )
21 fnfvrnss
 |-  ( ( ( F |` RR ) Fn RR /\ A. a e. RR ( ( F |` RR ) ` a ) e. RR ) -> ran ( F |` RR ) C_ RR )
22 6 20 21 syl2anc
 |-  ( F e. ( Poly ` RR ) -> ran ( F |` RR ) C_ RR )
23 df-f
 |-  ( ( F |` RR ) : RR --> RR <-> ( ( F |` RR ) Fn RR /\ ran ( F |` RR ) C_ RR ) )
24 6 22 23 sylanbrc
 |-  ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR )