Step |
Hyp |
Ref |
Expression |
1 |
|
plyadd.1 |
|- ( ph -> F e. ( Poly ` S ) ) |
2 |
|
plyadd.2 |
|- ( ph -> G e. ( Poly ` S ) ) |
3 |
|
plyadd.3 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
4 |
|
plymul.4 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
5 |
|
plysub.5 |
|- ( ph -> -u 1 e. S ) |
6 |
|
cnex |
|- CC e. _V |
7 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
8 |
1 7
|
syl |
|- ( ph -> F : CC --> CC ) |
9 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
10 |
2 9
|
syl |
|- ( ph -> G : CC --> CC ) |
11 |
|
ofnegsub |
|- ( ( CC e. _V /\ F : CC --> CC /\ G : CC --> CC ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
12 |
6 8 10 11
|
mp3an2i |
|- ( ph -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
13 |
|
plybss |
|- ( F e. ( Poly ` S ) -> S C_ CC ) |
14 |
1 13
|
syl |
|- ( ph -> S C_ CC ) |
15 |
|
plyconst |
|- ( ( S C_ CC /\ -u 1 e. S ) -> ( CC X. { -u 1 } ) e. ( Poly ` S ) ) |
16 |
14 5 15
|
syl2anc |
|- ( ph -> ( CC X. { -u 1 } ) e. ( Poly ` S ) ) |
17 |
16 2 3 4
|
plymul |
|- ( ph -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` S ) ) |
18 |
1 17 3
|
plyadd |
|- ( ph -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) e. ( Poly ` S ) ) |
19 |
12 18
|
eqeltrrd |
|- ( ph -> ( F oF - G ) e. ( Poly ` S ) ) |