Metamath Proof Explorer


Theorem plysub

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1
|- ( ph -> F e. ( Poly ` S ) )
plyadd.2
|- ( ph -> G e. ( Poly ` S ) )
plyadd.3
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
plymul.4
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
plysub.5
|- ( ph -> -u 1 e. S )
Assertion plysub
|- ( ph -> ( F oF - G ) e. ( Poly ` S ) )

Proof

Step Hyp Ref Expression
1 plyadd.1
 |-  ( ph -> F e. ( Poly ` S ) )
2 plyadd.2
 |-  ( ph -> G e. ( Poly ` S ) )
3 plyadd.3
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
4 plymul.4
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
5 plysub.5
 |-  ( ph -> -u 1 e. S )
6 cnex
 |-  CC e. _V
7 plyf
 |-  ( F e. ( Poly ` S ) -> F : CC --> CC )
8 1 7 syl
 |-  ( ph -> F : CC --> CC )
9 plyf
 |-  ( G e. ( Poly ` S ) -> G : CC --> CC )
10 2 9 syl
 |-  ( ph -> G : CC --> CC )
11 ofnegsub
 |-  ( ( CC e. _V /\ F : CC --> CC /\ G : CC --> CC ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) )
12 6 8 10 11 mp3an2i
 |-  ( ph -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) )
13 plybss
 |-  ( F e. ( Poly ` S ) -> S C_ CC )
14 1 13 syl
 |-  ( ph -> S C_ CC )
15 plyconst
 |-  ( ( S C_ CC /\ -u 1 e. S ) -> ( CC X. { -u 1 } ) e. ( Poly ` S ) )
16 14 5 15 syl2anc
 |-  ( ph -> ( CC X. { -u 1 } ) e. ( Poly ` S ) )
17 16 2 3 4 plymul
 |-  ( ph -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` S ) )
18 1 17 3 plyadd
 |-  ( ph -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) e. ( Poly ` S ) )
19 12 18 eqeltrrd
 |-  ( ph -> ( F oF - G ) e. ( Poly ` S ) )