| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyadd.1 |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 2 |  | plyadd.2 |  |-  ( ph -> G e. ( Poly ` S ) ) | 
						
							| 3 |  | plyadd.3 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 4 |  | plymul.4 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 5 |  | plysub.5 |  |-  ( ph -> -u 1 e. S ) | 
						
							| 6 |  | cnex |  |-  CC e. _V | 
						
							| 7 |  | plyf |  |-  ( F e. ( Poly ` S ) -> F : CC --> CC ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> F : CC --> CC ) | 
						
							| 9 |  | plyf |  |-  ( G e. ( Poly ` S ) -> G : CC --> CC ) | 
						
							| 10 | 2 9 | syl |  |-  ( ph -> G : CC --> CC ) | 
						
							| 11 |  | ofnegsub |  |-  ( ( CC e. _V /\ F : CC --> CC /\ G : CC --> CC ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) | 
						
							| 12 | 6 8 10 11 | mp3an2i |  |-  ( ph -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) | 
						
							| 13 |  | plybss |  |-  ( F e. ( Poly ` S ) -> S C_ CC ) | 
						
							| 14 | 1 13 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 15 |  | plyconst |  |-  ( ( S C_ CC /\ -u 1 e. S ) -> ( CC X. { -u 1 } ) e. ( Poly ` S ) ) | 
						
							| 16 | 14 5 15 | syl2anc |  |-  ( ph -> ( CC X. { -u 1 } ) e. ( Poly ` S ) ) | 
						
							| 17 | 16 2 3 4 | plymul |  |-  ( ph -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` S ) ) | 
						
							| 18 | 1 17 3 | plyadd |  |-  ( ph -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) e. ( Poly ` S ) ) | 
						
							| 19 | 12 18 | eqeltrrd |  |-  ( ph -> ( F oF - G ) e. ( Poly ` S ) ) |