Description: Theorem *11.53 in WhiteheadRussell p. 164. See pm11.53v for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm11.53 | |- ( A. x A. y ( ph -> ps ) <-> ( E. x ph -> A. y ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v | |- ( A. y ( ph -> ps ) <-> ( ph -> A. y ps ) ) |
|
2 | 1 | albii | |- ( A. x A. y ( ph -> ps ) <-> A. x ( ph -> A. y ps ) ) |
3 | nfv | |- F/ x ps |
|
4 | 3 | nfal | |- F/ x A. y ps |
5 | 4 | 19.23 | |- ( A. x ( ph -> A. y ps ) <-> ( E. x ph -> A. y ps ) ) |
6 | 2 5 | bitri | |- ( A. x A. y ( ph -> ps ) <-> ( E. x ph -> A. y ps ) ) |