Metamath Proof Explorer


Theorem pm11.53

Description: Theorem *11.53 in WhiteheadRussell p. 164. See pm11.53v for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.53
|- ( A. x A. y ( ph -> ps ) <-> ( E. x ph -> A. y ps ) )

Proof

Step Hyp Ref Expression
1 19.21v
 |-  ( A. y ( ph -> ps ) <-> ( ph -> A. y ps ) )
2 1 albii
 |-  ( A. x A. y ( ph -> ps ) <-> A. x ( ph -> A. y ps ) )
3 nfv
 |-  F/ x ps
4 3 nfal
 |-  F/ x A. y ps
5 4 19.23
 |-  ( A. x ( ph -> A. y ps ) <-> ( E. x ph -> A. y ps ) )
6 2 5 bitri
 |-  ( A. x A. y ( ph -> ps ) <-> ( E. x ph -> A. y ps ) )