Metamath Proof Explorer


Theorem pm11.53v

Description: Version of pm11.53 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020)

Ref Expression
Assertion pm11.53v
|- ( A. x A. y ( ph -> ps ) <-> ( E. x ph -> A. y ps ) )

Proof

Step Hyp Ref Expression
1 19.21v
 |-  ( A. y ( ph -> ps ) <-> ( ph -> A. y ps ) )
2 1 albii
 |-  ( A. x A. y ( ph -> ps ) <-> A. x ( ph -> A. y ps ) )
3 19.23v
 |-  ( A. x ( ph -> A. y ps ) <-> ( E. x ph -> A. y ps ) )
4 2 3 bitri
 |-  ( A. x A. y ( ph -> ps ) <-> ( E. x ph -> A. y ps ) )