Description: Theorem *13.13 in WhiteheadRussell p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.13b | |- ( ( [. A / x ]. ph /\ x = A ) -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
|
2 | 1 | biimparc | |- ( ( [. A / x ]. ph /\ x = A ) -> ph ) |