Description: Theorem *13.14 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.14 | |- ( ( [. A / x ]. ph /\ -. ph ) -> x =/= A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
|
2 | 1 | biimprcd | |- ( [. A / x ]. ph -> ( x = A -> ph ) ) |
3 | 2 | necon3bd | |- ( [. A / x ]. ph -> ( -. ph -> x =/= A ) ) |
4 | 3 | imp | |- ( ( [. A / x ]. ph /\ -. ph ) -> x =/= A ) |