Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( y = A -> ( y = B <-> A = B ) ) |
2 |
|
eqeq2 |
|- ( y = A -> ( z = y <-> z = A ) ) |
3 |
2
|
bibi1d |
|- ( y = A -> ( ( z = y <-> z = B ) <-> ( z = A <-> z = B ) ) ) |
4 |
3
|
albidv |
|- ( y = A -> ( A. z ( z = y <-> z = B ) <-> A. z ( z = A <-> z = B ) ) ) |
5 |
|
eqeq2 |
|- ( y = B -> ( z = y <-> z = B ) ) |
6 |
5
|
alrimiv |
|- ( y = B -> A. z ( z = y <-> z = B ) ) |
7 |
|
stdpc4 |
|- ( A. z ( z = y <-> z = B ) -> [ y / z ] ( z = y <-> z = B ) ) |
8 |
|
sbbi |
|- ( [ y / z ] ( z = y <-> z = B ) <-> ( [ y / z ] z = y <-> [ y / z ] z = B ) ) |
9 |
|
eqsb1 |
|- ( [ y / z ] z = B <-> y = B ) |
10 |
9
|
bibi2i |
|- ( ( [ y / z ] z = y <-> [ y / z ] z = B ) <-> ( [ y / z ] z = y <-> y = B ) ) |
11 |
|
equsb1v |
|- [ y / z ] z = y |
12 |
|
biimp |
|- ( ( [ y / z ] z = y <-> y = B ) -> ( [ y / z ] z = y -> y = B ) ) |
13 |
11 12
|
mpi |
|- ( ( [ y / z ] z = y <-> y = B ) -> y = B ) |
14 |
10 13
|
sylbi |
|- ( ( [ y / z ] z = y <-> [ y / z ] z = B ) -> y = B ) |
15 |
8 14
|
sylbi |
|- ( [ y / z ] ( z = y <-> z = B ) -> y = B ) |
16 |
7 15
|
syl |
|- ( A. z ( z = y <-> z = B ) -> y = B ) |
17 |
6 16
|
impbii |
|- ( y = B <-> A. z ( z = y <-> z = B ) ) |
18 |
1 4 17
|
vtoclbg |
|- ( A e. V -> ( A = B <-> A. z ( z = A <-> z = B ) ) ) |