Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm14.123a | |- ( ( A e. V /\ B e. W ) -> ( A. z A. w ( ph <-> ( z = A /\ w = B ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albiim | |- ( A. z A. w ( ph <-> ( z = A /\ w = B ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ A. z A. w ( ( z = A /\ w = B ) -> ph ) ) ) |
|
2 | 2sbc6g | |- ( ( A e. V /\ B e. W ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
|
3 | 2 | anbi2d | |- ( ( A e. V /\ B e. W ) -> ( ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ A. z A. w ( ( z = A /\ w = B ) -> ph ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) ) ) |
4 | 1 3 | syl5bb | |- ( ( A e. V /\ B e. W ) -> ( A. z A. w ( ph <-> ( z = A /\ w = B ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) ) ) |