Step |
Hyp |
Ref |
Expression |
1 |
|
nfeu1 |
|- F/ x E! x ph |
2 |
|
nfsbc1v |
|- F/ x [. y / x ]. ph |
3 |
|
pm14.12 |
|- ( E! x ph -> A. x A. y ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
4 |
3
|
19.21bbi |
|- ( E! x ph -> ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
5 |
4
|
ancomsd |
|- ( E! x ph -> ( ( [. y / x ]. ph /\ ph ) -> x = y ) ) |
6 |
5
|
expdimp |
|- ( ( E! x ph /\ [. y / x ]. ph ) -> ( ph -> x = y ) ) |
7 |
|
pm13.13b |
|- ( ( [. y / x ]. ph /\ x = y ) -> ph ) |
8 |
7
|
ex |
|- ( [. y / x ]. ph -> ( x = y -> ph ) ) |
9 |
8
|
adantl |
|- ( ( E! x ph /\ [. y / x ]. ph ) -> ( x = y -> ph ) ) |
10 |
6 9
|
impbid |
|- ( ( E! x ph /\ [. y / x ]. ph ) -> ( ph <-> x = y ) ) |
11 |
10
|
ex |
|- ( E! x ph -> ( [. y / x ]. ph -> ( ph <-> x = y ) ) ) |
12 |
1 2 11
|
alrimd |
|- ( E! x ph -> ( [. y / x ]. ph -> A. x ( ph <-> x = y ) ) ) |
13 |
|
iotaval |
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
14 |
13
|
eqcomd |
|- ( A. x ( ph <-> x = y ) -> y = ( iota x ph ) ) |
15 |
12 14
|
syl6 |
|- ( E! x ph -> ( [. y / x ]. ph -> y = ( iota x ph ) ) ) |
16 |
|
iota4 |
|- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |
17 |
|
dfsbcq |
|- ( y = ( iota x ph ) -> ( [. y / x ]. ph <-> [. ( iota x ph ) / x ]. ph ) ) |
18 |
16 17
|
syl5ibrcom |
|- ( E! x ph -> ( y = ( iota x ph ) -> [. y / x ]. ph ) ) |
19 |
15 18
|
impbid |
|- ( E! x ph -> ( [. y / x ]. ph <-> y = ( iota x ph ) ) ) |
20 |
19
|
alrimiv |
|- ( E! x ph -> A. y ( [. y / x ]. ph <-> y = ( iota x ph ) ) ) |