Metamath Proof Explorer


Theorem pm2.32

Description: Theorem *2.32 of WhiteheadRussell p. 105. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.32
|- ( ( ( ph \/ ps ) \/ ch ) -> ( ph \/ ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 orass
 |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )
2 1 biimpi
 |-  ( ( ( ph \/ ps ) \/ ch ) -> ( ph \/ ( ps \/ ch ) ) )