Metamath Proof Explorer


Theorem pm2.37

Description: Theorem *2.37 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)

Ref Expression
Assertion pm2.37
|- ( ( ps -> ch ) -> ( ( ps \/ ph ) -> ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 pm2.38
 |-  ( ( ps -> ch ) -> ( ( ps \/ ph ) -> ( ch \/ ph ) ) )
2 pm1.4
 |-  ( ( ch \/ ph ) -> ( ph \/ ch ) )
3 1 2 syl6
 |-  ( ( ps -> ch ) -> ( ( ps \/ ph ) -> ( ph \/ ch ) ) )