Metamath Proof Explorer


Theorem pm2.46

Description: Theorem *2.46 of WhiteheadRussell p. 106. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.46
|- ( -. ( ph \/ ps ) -> -. ps )

Proof

Step Hyp Ref Expression
1 olc
 |-  ( ps -> ( ph \/ ps ) )
2 1 con3i
 |-  ( -. ( ph \/ ps ) -> -. ps )