Metamath Proof Explorer


Theorem pm2.47

Description: Theorem *2.47 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.47
|- ( -. ( ph \/ ps ) -> ( -. ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 pm2.45
 |-  ( -. ( ph \/ ps ) -> -. ph )
2 1 orcd
 |-  ( -. ( ph \/ ps ) -> ( -. ph \/ ps ) )