Metamath Proof Explorer


Theorem pm2.521g2

Description: A general instance of Theorem *2.521 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 8-Oct-2012)

Ref Expression
Assertion pm2.521g2
|- ( -. ( ph -> ps ) -> ( ch -> ph ) )

Proof

Step Hyp Ref Expression
1 simplim
 |-  ( -. ( ph -> ps ) -> ph )
2 1 a1d
 |-  ( -. ( ph -> ps ) -> ( ch -> ph ) )