Metamath Proof Explorer


Theorem pm2.53

Description: Theorem *2.53 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.53
|- ( ( ph \/ ps ) -> ( -. ph -> ps ) )

Proof

Step Hyp Ref Expression
1 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
2 1 biimpi
 |-  ( ( ph \/ ps ) -> ( -. ph -> ps ) )