Metamath Proof Explorer


Theorem pm2.54

Description: Theorem *2.54 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.54
|- ( ( -. ph -> ps ) -> ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
2 1 biimpri
 |-  ( ( -. ph -> ps ) -> ( ph \/ ps ) )