Metamath Proof Explorer


Theorem pm2.5g

Description: General instance of Theorem *2.5 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 9-Oct-2012)

Ref Expression
Assertion pm2.5g
|- ( -. ( ph -> ps ) -> ( -. ph -> ch ) )

Proof

Step Hyp Ref Expression
1 simplim
 |-  ( -. ( ph -> ps ) -> ph )
2 1 pm2.24d
 |-  ( -. ( ph -> ps ) -> ( -. ph -> ch ) )