Metamath Proof Explorer


Theorem pm2.6

Description: Theorem *2.6 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.6
|- ( ( -. ph -> ps ) -> ( ( ph -> ps ) -> ps ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( -. ph -> ps ) -> ( -. ph -> ps ) )
2 idd
 |-  ( ( -. ph -> ps ) -> ( ps -> ps ) )
3 1 2 jad
 |-  ( ( -. ph -> ps ) -> ( ( ph -> ps ) -> ps ) )