Description: Theorem *2.61 of WhiteheadRussell p. 107. Useful for eliminating an antecedent. (Contributed by NM, 4-Jan-1993) (Proof shortened by Wolf Lammen, 22-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.61 | |- ( ( ph -> ps ) -> ( ( -. ph -> ps ) -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.6 | |- ( ( -. ph -> ps ) -> ( ( ph -> ps ) -> ps ) ) |
|
2 | 1 | com12 | |- ( ( ph -> ps ) -> ( ( -. ph -> ps ) -> ps ) ) |