Metamath Proof Explorer


Theorem pm2.61

Description: Theorem *2.61 of WhiteheadRussell p. 107. Useful for eliminating an antecedent. (Contributed by NM, 4-Jan-1993) (Proof shortened by Wolf Lammen, 22-Sep-2013)

Ref Expression
Assertion pm2.61
|- ( ( ph -> ps ) -> ( ( -. ph -> ps ) -> ps ) )

Proof

Step Hyp Ref Expression
1 pm2.6
 |-  ( ( -. ph -> ps ) -> ( ( ph -> ps ) -> ps ) )
2 1 com12
 |-  ( ( ph -> ps ) -> ( ( -. ph -> ps ) -> ps ) )