| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2.61da3ne.1 |
|- ( ( ph /\ A = B ) -> ps ) |
| 2 |
|
pm2.61da3ne.2 |
|- ( ( ph /\ C = D ) -> ps ) |
| 3 |
|
pm2.61da3ne.3 |
|- ( ( ph /\ E = F ) -> ps ) |
| 4 |
|
pm2.61da3ne.4 |
|- ( ( ph /\ ( A =/= B /\ C =/= D /\ E =/= F ) ) -> ps ) |
| 5 |
1
|
a1d |
|- ( ( ph /\ A = B ) -> ( ( C =/= D /\ E =/= F ) -> ps ) ) |
| 6 |
4
|
3exp2 |
|- ( ph -> ( A =/= B -> ( C =/= D -> ( E =/= F -> ps ) ) ) ) |
| 7 |
6
|
imp4b |
|- ( ( ph /\ A =/= B ) -> ( ( C =/= D /\ E =/= F ) -> ps ) ) |
| 8 |
5 7
|
pm2.61dane |
|- ( ph -> ( ( C =/= D /\ E =/= F ) -> ps ) ) |
| 9 |
8
|
imp |
|- ( ( ph /\ ( C =/= D /\ E =/= F ) ) -> ps ) |
| 10 |
2 3 9
|
pm2.61da2ne |
|- ( ph -> ps ) |