Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2.61dane.1 | |- ( ( ph /\ A = B ) -> ps ) |
|
pm2.61dane.2 | |- ( ( ph /\ A =/= B ) -> ps ) |
||
Assertion | pm2.61dane | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dane.1 | |- ( ( ph /\ A = B ) -> ps ) |
|
2 | pm2.61dane.2 | |- ( ( ph /\ A =/= B ) -> ps ) |
|
3 | 1 | ex | |- ( ph -> ( A = B -> ps ) ) |
4 | 2 | ex | |- ( ph -> ( A =/= B -> ps ) ) |
5 | 3 4 | pm2.61dne | |- ( ph -> ps ) |