Metamath Proof Explorer


Theorem pm2.61ddan

Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013)

Ref Expression
Hypotheses pm2.61ddan.1
|- ( ( ph /\ ps ) -> th )
pm2.61ddan.2
|- ( ( ph /\ ch ) -> th )
pm2.61ddan.3
|- ( ( ph /\ ( -. ps /\ -. ch ) ) -> th )
Assertion pm2.61ddan
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 pm2.61ddan.1
 |-  ( ( ph /\ ps ) -> th )
2 pm2.61ddan.2
 |-  ( ( ph /\ ch ) -> th )
3 pm2.61ddan.3
 |-  ( ( ph /\ ( -. ps /\ -. ch ) ) -> th )
4 2 adantlr
 |-  ( ( ( ph /\ -. ps ) /\ ch ) -> th )
5 3 anassrs
 |-  ( ( ( ph /\ -. ps ) /\ -. ch ) -> th )
6 4 5 pm2.61dan
 |-  ( ( ph /\ -. ps ) -> th )
7 1 6 pm2.61dan
 |-  ( ph -> th )