Metamath Proof Explorer


Theorem pm2.61i

Description: Inference eliminating an antecedent. (Contributed by NM, 5-Apr-1994) (Proof shortened by Wolf Lammen, 19-Nov-2023)

Ref Expression
Hypotheses pm2.61i.1
|- ( ph -> ps )
pm2.61i.2
|- ( -. ph -> ps )
Assertion pm2.61i
|- ps

Proof

Step Hyp Ref Expression
1 pm2.61i.1
 |-  ( ph -> ps )
2 pm2.61i.2
 |-  ( -. ph -> ps )
3 1 2 nsyl4
 |-  ( -. ps -> ps )
4 3 pm2.18i
 |-  ps