Metamath Proof Explorer


Theorem pm2.61ian

Description: Elimination of an antecedent. (Contributed by NM, 1-Jan-2005)

Ref Expression
Hypotheses pm2.61ian.1
|- ( ( ph /\ ps ) -> ch )
pm2.61ian.2
|- ( ( -. ph /\ ps ) -> ch )
Assertion pm2.61ian
|- ( ps -> ch )

Proof

Step Hyp Ref Expression
1 pm2.61ian.1
 |-  ( ( ph /\ ps ) -> ch )
2 pm2.61ian.2
 |-  ( ( -. ph /\ ps ) -> ch )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 2 ex
 |-  ( -. ph -> ( ps -> ch ) )
5 3 4 pm2.61i
 |-  ( ps -> ch )