Metamath Proof Explorer


Theorem pm2.61iii

Description: Inference eliminating three antecedents. (Contributed by NM, 2-Jan-2002) (Proof shortened by Wolf Lammen, 22-Sep-2013)

Ref Expression
Hypotheses pm2.61iii.1
|- ( -. ph -> ( -. ps -> ( -. ch -> th ) ) )
pm2.61iii.2
|- ( ph -> th )
pm2.61iii.3
|- ( ps -> th )
pm2.61iii.4
|- ( ch -> th )
Assertion pm2.61iii
|- th

Proof

Step Hyp Ref Expression
1 pm2.61iii.1
 |-  ( -. ph -> ( -. ps -> ( -. ch -> th ) ) )
2 pm2.61iii.2
 |-  ( ph -> th )
3 pm2.61iii.3
 |-  ( ps -> th )
4 pm2.61iii.4
 |-  ( ch -> th )
5 2 a1d
 |-  ( ph -> ( -. ch -> th ) )
6 3 a1d
 |-  ( ps -> ( -. ch -> th ) )
7 1 5 6 pm2.61ii
 |-  ( -. ch -> th )
8 4 7 pm2.61i
 |-  th