Metamath Proof Explorer


Theorem pm2.61nii

Description: Inference eliminating two antecedents. (Contributed by NM, 13-Jul-2005) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 13-Nov-2012)

Ref Expression
Hypotheses pm2.61nii.1
|- ( ph -> ( ps -> ch ) )
pm2.61nii.2
|- ( -. ph -> ch )
pm2.61nii.3
|- ( -. ps -> ch )
Assertion pm2.61nii
|- ch

Proof

Step Hyp Ref Expression
1 pm2.61nii.1
 |-  ( ph -> ( ps -> ch ) )
2 pm2.61nii.2
 |-  ( -. ph -> ch )
3 pm2.61nii.3
 |-  ( -. ps -> ch )
4 1 3 pm2.61d1
 |-  ( ph -> ch )
5 4 2 pm2.61i
 |-  ch