Metamath Proof Explorer


Theorem pm2.65

Description: Theorem *2.65 of WhiteheadRussell p. 107. Proof by contradiction. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 8-Mar-2013)

Ref Expression
Assertion pm2.65
|- ( ( ph -> ps ) -> ( ( ph -> -. ps ) -> -. ph ) )

Proof

Step Hyp Ref Expression
1 idd
 |-  ( ( ph -> ps ) -> ( -. ph -> -. ph ) )
2 con3
 |-  ( ( ph -> ps ) -> ( -. ps -> -. ph ) )
3 1 2 jad
 |-  ( ( ph -> ps ) -> ( ( ph -> -. ps ) -> -. ph ) )