Metamath Proof Explorer


Theorem pm2.65da

Description: Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014)

Ref Expression
Hypotheses pm2.65da.1
|- ( ( ph /\ ps ) -> ch )
pm2.65da.2
|- ( ( ph /\ ps ) -> -. ch )
Assertion pm2.65da
|- ( ph -> -. ps )

Proof

Step Hyp Ref Expression
1 pm2.65da.1
 |-  ( ( ph /\ ps ) -> ch )
2 pm2.65da.2
 |-  ( ( ph /\ ps ) -> -. ch )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 2 ex
 |-  ( ph -> ( ps -> -. ch ) )
5 3 4 pm2.65d
 |-  ( ph -> -. ps )