Metamath Proof Explorer


Theorem pm2.65i

Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994) (Proof shortened by Wolf Lammen, 11-Sep-2013)

Ref Expression
Hypotheses pm2.65i.1
|- ( ph -> ps )
pm2.65i.2
|- ( ph -> -. ps )
Assertion pm2.65i
|- -. ph

Proof

Step Hyp Ref Expression
1 pm2.65i.1
 |-  ( ph -> ps )
2 pm2.65i.2
 |-  ( ph -> -. ps )
3 2 con2i
 |-  ( ps -> -. ph )
4 1 con3i
 |-  ( -. ps -> -. ph )
5 3 4 pm2.61i
 |-  -. ph