Metamath Proof Explorer


Theorem pm2.67

Description: Theorem *2.67 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.67
|- ( ( ( ph \/ ps ) -> ps ) -> ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 pm2.67-2
 |-  ( ( ( ph \/ ps ) -> ps ) -> ( ph -> ps ) )