Metamath Proof Explorer


Theorem pm2.67-2

Description: Slight generalization of Theorem *2.67 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.67-2
|- ( ( ( ph \/ ch ) -> ps ) -> ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( ph -> ( ph \/ ch ) )
2 1 imim1i
 |-  ( ( ( ph \/ ch ) -> ps ) -> ( ph -> ps ) )