Metamath Proof Explorer


Theorem pm2.68

Description: Theorem *2.68 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.68
|- ( ( ( ph -> ps ) -> ps ) -> ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 jarl
 |-  ( ( ( ph -> ps ) -> ps ) -> ( -. ph -> ps ) )
2 1 orrd
 |-  ( ( ( ph -> ps ) -> ps ) -> ( ph \/ ps ) )