Metamath Proof Explorer


Theorem pm2.73

Description: Theorem *2.73 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.73
|- ( ( ph -> ps ) -> ( ( ( ph \/ ps ) \/ ch ) -> ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 pm2.621
 |-  ( ( ph -> ps ) -> ( ( ph \/ ps ) -> ps ) )
2 1 orim1d
 |-  ( ( ph -> ps ) -> ( ( ( ph \/ ps ) \/ ch ) -> ( ps \/ ch ) ) )