Metamath Proof Explorer


Theorem pm2.74

Description: Theorem *2.74 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion pm2.74
|- ( ( ps -> ph ) -> ( ( ( ph \/ ps ) \/ ch ) -> ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 orel2
 |-  ( -. ps -> ( ( ph \/ ps ) -> ph ) )
2 ax-1
 |-  ( ph -> ( ( ph \/ ps ) -> ph ) )
3 1 2 ja
 |-  ( ( ps -> ph ) -> ( ( ph \/ ps ) -> ph ) )
4 3 orim1d
 |-  ( ( ps -> ph ) -> ( ( ( ph \/ ps ) \/ ch ) -> ( ph \/ ch ) ) )