Description: Theorem *2.74 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.74 | |- ( ( ps -> ph ) -> ( ( ( ph \/ ps ) \/ ch ) -> ( ph \/ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel2 | |- ( -. ps -> ( ( ph \/ ps ) -> ph ) ) |
|
2 | ax-1 | |- ( ph -> ( ( ph \/ ps ) -> ph ) ) |
|
3 | 1 2 | ja | |- ( ( ps -> ph ) -> ( ( ph \/ ps ) -> ph ) ) |
4 | 3 | orim1d | |- ( ( ps -> ph ) -> ( ( ( ph \/ ps ) \/ ch ) -> ( ph \/ ch ) ) ) |