Description: Theorem *2.8 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.8 | |- ( ( ph \/ ps ) -> ( ( -. ps \/ ch ) -> ( ph \/ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 | |- ( ( ph \/ ps ) -> ( -. ph -> ps ) ) |
|
2 | 1 | con1d | |- ( ( ph \/ ps ) -> ( -. ps -> ph ) ) |
3 | 2 | orim1d | |- ( ( ph \/ ps ) -> ( ( -. ps \/ ch ) -> ( ph \/ ch ) ) ) |