Description: Theorem *2.81 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.81 | |- ( ( ps -> ( ch -> th ) ) -> ( ( ph \/ ps ) -> ( ( ph \/ ch ) -> ( ph \/ th ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim2 | |- ( ( ps -> ( ch -> th ) ) -> ( ( ph \/ ps ) -> ( ph \/ ( ch -> th ) ) ) ) |
|
2 | pm2.76 | |- ( ( ph \/ ( ch -> th ) ) -> ( ( ph \/ ch ) -> ( ph \/ th ) ) ) |
|
3 | 1 2 | syl6 | |- ( ( ps -> ( ch -> th ) ) -> ( ( ph \/ ps ) -> ( ( ph \/ ch ) -> ( ph \/ th ) ) ) ) |