Description: Theorem *2.82 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.82 | |- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ( ph \/ -. ch ) \/ th ) -> ( ( ph \/ ps ) \/ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24 | |- ( ch -> ( -. ch -> ps ) ) |
|
2 | 1 | orim2d | |- ( ch -> ( ( ph \/ -. ch ) -> ( ph \/ ps ) ) ) |
3 | 2 | jao1i | |- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ph \/ -. ch ) -> ( ph \/ ps ) ) ) |
4 | 3 | orim1d | |- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ( ph \/ -. ch ) \/ th ) -> ( ( ph \/ ps ) \/ th ) ) ) |