Metamath Proof Explorer


Theorem pm2.82

Description: Theorem *2.82 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.82
|- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ( ph \/ -. ch ) \/ th ) -> ( ( ph \/ ps ) \/ th ) ) )

Proof

Step Hyp Ref Expression
1 pm2.24
 |-  ( ch -> ( -. ch -> ps ) )
2 1 orim2d
 |-  ( ch -> ( ( ph \/ -. ch ) -> ( ph \/ ps ) ) )
3 2 jao1i
 |-  ( ( ( ph \/ ps ) \/ ch ) -> ( ( ph \/ -. ch ) -> ( ph \/ ps ) ) )
4 3 orim1d
 |-  ( ( ( ph \/ ps ) \/ ch ) -> ( ( ( ph \/ -. ch ) \/ th ) -> ( ( ph \/ ps ) \/ th ) ) )