Description: Theorem *2.85 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.85 | |- ( ( ( ph \/ ps ) -> ( ph \/ ch ) ) -> ( ph \/ ( ps -> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orimdi | |- ( ( ph \/ ( ps -> ch ) ) <-> ( ( ph \/ ps ) -> ( ph \/ ch ) ) ) |
|
2 | 1 | biimpri | |- ( ( ( ph \/ ps ) -> ( ph \/ ch ) ) -> ( ph \/ ( ps -> ch ) ) ) |