Metamath Proof Explorer


Theorem pm2.86

Description: Converse of Axiom ax-2 . Theorem *2.86 of WhiteheadRussell p. 108. (Contributed by NM, 25-Apr-1994) (Proof shortened by Wolf Lammen, 3-Apr-2013)

Ref Expression
Assertion pm2.86
|- ( ( ( ph -> ps ) -> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ( ph -> ps ) -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
2 1 pm2.86d
 |-  ( ( ( ph -> ps ) -> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) )