Description: Converse of Axiom ax-2 . Theorem *2.86 of WhiteheadRussell p. 108. (Contributed by NM, 25-Apr-1994) (Proof shortened by Wolf Lammen, 3-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.86 | |- ( ( ( ph -> ps ) -> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ( ( ph -> ps ) -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
|
2 | 1 | pm2.86d | |- ( ( ( ph -> ps ) -> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) ) |