| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pm2mpval.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pm2mpval.c | 
							 |-  C = ( N Mat P )  | 
						
						
							| 3 | 
							
								
							 | 
							pm2mpval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							pm2mpval.m | 
							 |-  .* = ( .s ` Q )  | 
						
						
							| 5 | 
							
								
							 | 
							pm2mpval.e | 
							 |-  .^ = ( .g ` ( mulGrp ` Q ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pm2mpval.x | 
							 |-  X = ( var1 ` A )  | 
						
						
							| 7 | 
							
								
							 | 
							pm2mpval.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 8 | 
							
								
							 | 
							pm2mpval.q | 
							 |-  Q = ( Poly1 ` A )  | 
						
						
							| 9 | 
							
								
							 | 
							pm2mpval.t | 
							 |-  T = ( N pMatToMatPoly R )  | 
						
						
							| 10 | 
							
								
							 | 
							pm2mpcl.l | 
							 |-  L = ( Base ` Q )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pm2mpfval | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` Q ) = ( 0g ` Q )  | 
						
						
							| 13 | 
							
								7
							 | 
							matring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )  | 
						
						
							| 14 | 
							
								8
							 | 
							ply1ring | 
							 |-  ( A e. Ring -> Q e. Ring )  | 
						
						
							| 15 | 
							
								
							 | 
							ringcmn | 
							 |-  ( Q e. Ring -> Q e. CMnd )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3syl | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. CMnd )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. CMnd )  | 
						
						
							| 18 | 
							
								
							 | 
							nn0ex | 
							 |-  NN0 e. _V  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> NN0 e. _V )  | 
						
						
							| 20 | 
							
								13
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> A e. Ring )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> R e. Ring )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> M e. B )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> k e. NN0 )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` A ) = ( Base ` A )  | 
						
						
							| 26 | 
							
								1 2 3 7 25
							 | 
							decpmatcl | 
							 |-  ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) )  | 
						
						
							| 27 | 
							
								22 23 24 26
							 | 
							syl3anc | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( mulGrp ` Q ) = ( mulGrp ` Q )  | 
						
						
							| 29 | 
							
								25 8 6 4 28 5 10
							 | 
							ply1tmcl | 
							 |-  ( ( A e. Ring /\ ( M decompPMat k ) e. ( Base ` A ) /\ k e. NN0 ) -> ( ( M decompPMat k ) .* ( k .^ X ) ) e. L )  | 
						
						
							| 30 | 
							
								21 27 24 29
							 | 
							syl3anc | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( ( M decompPMat k ) .* ( k .^ X ) ) e. L )  | 
						
						
							| 31 | 
							
								30
							 | 
							fmpttd | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) : NN0 --> L )  | 
						
						
							| 32 | 
							
								8
							 | 
							ply1lmod | 
							 |-  ( A e. Ring -> Q e. LMod )  | 
						
						
							| 33 | 
							
								20 32
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. LMod )  | 
						
						
							| 34 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Scalar ` Q ) = ( Scalar ` Q ) )  | 
						
						
							| 35 | 
							
								8 6 28 5 10
							 | 
							ply1moncl | 
							 |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. L )  | 
						
						
							| 36 | 
							
								20 35
							 | 
							sylan | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. L )  | 
						
						
							| 37 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` A ) = ( 0g ` A )  | 
						
						
							| 39 | 
							
								1 2 3 7 38
							 | 
							decpmatfsupp | 
							 |-  ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							3adant1 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) )  | 
						
						
							| 41 | 
							
								8
							 | 
							ply1sca | 
							 |-  ( A e. Ring -> A = ( Scalar ` Q ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							eqcomd | 
							 |-  ( A e. Ring -> ( Scalar ` Q ) = A )  | 
						
						
							| 43 | 
							
								20 42
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Scalar ` Q ) = A )  | 
						
						
							| 44 | 
							
								43
							 | 
							fveq2d | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( 0g ` ( Scalar ` Q ) ) = ( 0g ` A ) )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							breqtrrd | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` ( Scalar ` Q ) ) )  | 
						
						
							| 46 | 
							
								19 33 34 10 27 36 12 37 4 45
							 | 
							mptscmfsupp0 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) )  | 
						
						
							| 47 | 
							
								10 12 17 19 31 46
							 | 
							gsumcl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) e. L )  | 
						
						
							| 48 | 
							
								11 47
							 | 
							eqeltrd | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. L )  |