Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpval.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpval.b |
|- B = ( Base ` C ) |
4 |
|
pm2mpval.m |
|- .* = ( .s ` Q ) |
5 |
|
pm2mpval.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
6 |
|
pm2mpval.x |
|- X = ( var1 ` A ) |
7 |
|
pm2mpval.a |
|- A = ( N Mat R ) |
8 |
|
pm2mpval.q |
|- Q = ( Poly1 ` A ) |
9 |
|
pm2mpval.t |
|- T = ( N pMatToMatPoly R ) |
10 |
|
simpll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> N e. Fin ) |
11 |
|
simplr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> R e. Ring ) |
12 |
|
simprl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> M e. B ) |
13 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) |
15 |
14
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( coe1 ` ( T ` M ) ) = ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) ) |
16 |
15
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( T ` M ) ) ` K ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) ) |
17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
18 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
19 |
18
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> A e. Ring ) |
20 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
21 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
22 |
11
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> R e. Ring ) |
23 |
12
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> M e. B ) |
24 |
|
simpr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> k e. NN0 ) |
25 |
1 2 3 7 20
|
decpmatcl |
|- ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) |
26 |
22 23 24 25
|
syl3anc |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) |
27 |
26
|
ralrimiva |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> A. k e. NN0 ( M decompPMat k ) e. ( Base ` A ) ) |
28 |
1 2 3 7 21
|
decpmatfsupp |
|- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) |
29 |
28
|
ad2ant2lr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) |
30 |
|
simpr |
|- ( ( M e. B /\ K e. NN0 ) -> K e. NN0 ) |
31 |
30
|
adantl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> K e. NN0 ) |
32 |
8 17 6 5 19 20 4 21 27 29 31
|
gsummoncoe1 |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = [_ K / k ]_ ( M decompPMat k ) ) |
33 |
|
csbov2g |
|- ( K e. NN0 -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat [_ K / k ]_ k ) ) |
34 |
|
csbvarg |
|- ( K e. NN0 -> [_ K / k ]_ k = K ) |
35 |
34
|
oveq2d |
|- ( K e. NN0 -> ( M decompPMat [_ K / k ]_ k ) = ( M decompPMat K ) ) |
36 |
33 35
|
eqtrd |
|- ( K e. NN0 -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat K ) ) |
37 |
36
|
adantl |
|- ( ( M e. B /\ K e. NN0 ) -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat K ) ) |
38 |
37
|
adantl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat K ) ) |
39 |
16 32 38
|
3eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( T ` M ) ) ` K ) = ( M decompPMat K ) ) |